Skip to main content
Top
Published in:

22-12-2022 | Technical Article

Effect of Composite Refining Modifier on Microstructure and Properties of AlSi10Mg Alloy

Authors: Ruiheng Li, Yicheng Feng, Yuanke Fu, Sicong Zhao, Lei Wang, Erjun Guo

Published in: Journal of Materials Engineering and Performance | Issue 19/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to improve the effects of grain refinement, modification and refined degassing of Al-Si alloy synchronously, and to solve the problems of their mutual restrictions, the new type of composite refining modifier (K2TiF6, KBF4, NaCl and KCl) was used to tailor the microstructure of AlSi10Mg alloy. Through varying the content of K2TiF6 and KBF4, the effects of the composite refining modifier on microstructure and mechanical properties of AlSi10Mg alloy were investigated compared with the conventional C2Cl6 refining agent. The experimental results indicate that TiB2 is formed in situ by K2TiF6 and KBF4 at 800 °C. TiB2 distributed in the melt acts as nucleation substrates for the primary Al (α-Al), which promotes the refinement transition of α-Al. The Na and K in the composite refining modifier jointly modify the eutectic Si. At the same time, the reaction products can remove gases and oxidized inclusions from the melt and play a critical role in refined degassing. Excellent mechanical properties can be obtained when K2TiF6 and KBF4 account for 3.5 wt.% of the melt, with an increase in tensile strength and elongation of 33.1 and 126.9%, respectively, compared with adding 1.6 wt.% of C2Cl6 to the melt.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.J. Jiang, C.Y. Liu, Z.X. Yang, Y.P. Li, H.F. Huang, and F.C. Qin, Effect of Friction Stir Processing on the Microstructure, Damping Capacity, and Mechanical Properties of Al-Si Alloy, J. Mater. Eng. Perform., 2019, 28(2), p 1173–1179.CrossRef H.J. Jiang, C.Y. Liu, Z.X. Yang, Y.P. Li, H.F. Huang, and F.C. Qin, Effect of Friction Stir Processing on the Microstructure, Damping Capacity, and Mechanical Properties of Al-Si Alloy, J. Mater. Eng. Perform., 2019, 28(2), p 1173–1179.CrossRef
2.
go back to reference X. Liu, C. Zhao, X. Zhou, F. Eibl, Z. Shen, W. Liu, and W. Meiners, CNT-Reinforced AlSi10Mg Composite by Selective Laser Melting: Microstructural and Mechanical Properties, Mater. Sci. Technol., 2019, 35(9), p 1038–1045.CrossRef X. Liu, C. Zhao, X. Zhou, F. Eibl, Z. Shen, W. Liu, and W. Meiners, CNT-Reinforced AlSi10Mg Composite by Selective Laser Melting: Microstructural and Mechanical Properties, Mater. Sci. Technol., 2019, 35(9), p 1038–1045.CrossRef
3.
go back to reference S. Behnamfard, R.A. Khosroshahi, D. Brabazon, and R.T. Mousavian, Study on the Incorporation of Ceramic Nanoparticles Into the Semi-Solid A356 Melt, Mater. Chem. Phys., 2019, 230, p 25–36.CrossRef S. Behnamfard, R.A. Khosroshahi, D. Brabazon, and R.T. Mousavian, Study on the Incorporation of Ceramic Nanoparticles Into the Semi-Solid A356 Melt, Mater. Chem. Phys., 2019, 230, p 25–36.CrossRef
4.
go back to reference P. Nelaturu, S. Jana, R.S. Mishra, G. Grant, and B.E. Carlson, Influence of Friction Stir Processing on the Room Temperature Fatigue Cracking Mechanisms of A356 Aluminum Alloy, Mater. Sci. Eng. A, 2018, 716, p 165–178.CrossRef P. Nelaturu, S. Jana, R.S. Mishra, G. Grant, and B.E. Carlson, Influence of Friction Stir Processing on the Room Temperature Fatigue Cracking Mechanisms of A356 Aluminum Alloy, Mater. Sci. Eng. A, 2018, 716, p 165–178.CrossRef
5.
go back to reference C.F. Feng and L. Froyen, Microstructures of in Situ Al/TiB2 MMCs Prepared by a Casting Route, J. Mater. Sci., 2000, 35, p 837–850.CrossRef C.F. Feng and L. Froyen, Microstructures of in Situ Al/TiB2 MMCs Prepared by a Casting Route, J. Mater. Sci., 2000, 35, p 837–850.CrossRef
6.
go back to reference M.Z. Wu, J.W. Zhang, Y.B. Zhang, and H.Q. Wang, Effects of Mg Content on the Fatigue Strength and Fracture Behavior of Al-Si-Mg Casting Alloys, J. Mater. Eng. Perform., 2018, 27, p 5992–6003.CrossRef M.Z. Wu, J.W. Zhang, Y.B. Zhang, and H.Q. Wang, Effects of Mg Content on the Fatigue Strength and Fracture Behavior of Al-Si-Mg Casting Alloys, J. Mater. Eng. Perform., 2018, 27, p 5992–6003.CrossRef
7.
go back to reference N. Read, W. Wang, K. Essa, and M.M. Attallah, Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development, Mater. Des., 2015, 65, p 417–424.CrossRef N. Read, W. Wang, K. Essa, and M.M. Attallah, Selective Laser Melting of AlSi10Mg Alloy: Process Optimisation and Mechanical Properties Development, Mater. Des., 2015, 65, p 417–424.CrossRef
8.
go back to reference W. Lefebvre, G. Rose, P. Delroisse, E. Baustert, F. Cuvilly, and A. Simar, Nanoscale Periodic Gradients Generated by Laser Powder Bed Fusion of An AlSi10Mg Alloy, Mater. Des., 2021, 197, p 109264.CrossRef W. Lefebvre, G. Rose, P. Delroisse, E. Baustert, F. Cuvilly, and A. Simar, Nanoscale Periodic Gradients Generated by Laser Powder Bed Fusion of An AlSi10Mg Alloy, Mater. Des., 2021, 197, p 109264.CrossRef
9.
go back to reference J.R. Guan, Y.H. Jiang, X.W. Zhang, and X.Y. Chong, Microstructural Evolution and EBSD Analysis of AlSi10Mg Alloy Fabricated by Selective Laser Remelting, Mater. Charact., 2020, 161, p 110079.CrossRef J.R. Guan, Y.H. Jiang, X.W. Zhang, and X.Y. Chong, Microstructural Evolution and EBSD Analysis of AlSi10Mg Alloy Fabricated by Selective Laser Remelting, Mater. Charact., 2020, 161, p 110079.CrossRef
10.
go back to reference T.T. Sun, H.Z. Wang, Z.Y. Gao, Y. Wu, M.L. Wang, X.Y. Jin, C.L.A. Leung, P.D. Lee, Y.A. Fu, and H.W. Wang, The Role of In-Situ Nano-TiB2 Particles in Improving the Printability of Noncastable 2024Al Alloy, Mater. Res. Lett., 2022, 10, p 656–665.CrossRef T.T. Sun, H.Z. Wang, Z.Y. Gao, Y. Wu, M.L. Wang, X.Y. Jin, C.L.A. Leung, P.D. Lee, Y.A. Fu, and H.W. Wang, The Role of In-Situ Nano-TiB2 Particles in Improving the Printability of Noncastable 2024Al Alloy, Mater. Res. Lett., 2022, 10, p 656–665.CrossRef
11.
go back to reference W. Zhang, Y. Liu, J. Yang, J. Dang, H. Xu, and Z. Du, Effects of Sc Content on the Microstructure of As-Cast Al-7 wt.% Si Alloys, Mater. Charact., 2012, 66, p 104–110.CrossRef W. Zhang, Y. Liu, J. Yang, J. Dang, H. Xu, and Z. Du, Effects of Sc Content on the Microstructure of As-Cast Al-7 wt.% Si Alloys, Mater. Charact., 2012, 66, p 104–110.CrossRef
12.
go back to reference J. Sun, X.B. Zhang, Y.J. Zhang, N.H. Ma, and H.W. Wang, Modification Mechanism of Primary Silicon by TiB2 Particles in a TiB2/ZL109 Composite, J. Mater. Sci., 2015, 50, p 1237–1247.CrossRef J. Sun, X.B. Zhang, Y.J. Zhang, N.H. Ma, and H.W. Wang, Modification Mechanism of Primary Silicon by TiB2 Particles in a TiB2/ZL109 Composite, J. Mater. Sci., 2015, 50, p 1237–1247.CrossRef
13.
go back to reference P.T. Li, Y.G. Li, J.F. Nie, and X.F. Liu, Influence of Forming Process on Three-Dimensional Morphology of TiB2 Particles in Al-Ti-B Alloys, Trans. Nonferrous Metals Soc., 2012, 22, p 564–570.CrossRef P.T. Li, Y.G. Li, J.F. Nie, and X.F. Liu, Influence of Forming Process on Three-Dimensional Morphology of TiB2 Particles in Al-Ti-B Alloys, Trans. Nonferrous Metals Soc., 2012, 22, p 564–570.CrossRef
14.
go back to reference X. Liu, Y. Zhang, B. Beausir, F. Liu, C. Esling, F. Yu, and L. Zuo, Twin-Controlled Growth of Eutectic Si in Unmodified and Sr-Modified Al-12.7% Si Alloys Investigated by SEM/EBSD, Acta Mater., 2015, 97, p 338–347.CrossRef X. Liu, Y. Zhang, B. Beausir, F. Liu, C. Esling, F. Yu, and L. Zuo, Twin-Controlled Growth of Eutectic Si in Unmodified and Sr-Modified Al-12.7% Si Alloys Investigated by SEM/EBSD, Acta Mater., 2015, 97, p 338–347.CrossRef
15.
go back to reference M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, and J. Banhart, The Role of Strontium in Modifying Aluminium-Silicon Alloys, Acta. Mater., 2012, 60, p 3920–3928.CrossRef M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, and J. Banhart, The Role of Strontium in Modifying Aluminium-Silicon Alloys, Acta. Mater., 2012, 60, p 3920–3928.CrossRef
16.
go back to reference A.A. Simard, F. Dallaire, J. Proulx, and P. Rochette, Inline Cleanliness Benchmarking of Aluminium Alloys, Alum. Today, 2000, 12, p 34–36. A.A. Simard, F. Dallaire, J. Proulx, and P. Rochette, Inline Cleanliness Benchmarking of Aluminium Alloys, Alum. Today, 2000, 12, p 34–36.
17.
go back to reference Q.G. Wang, D. Apelian, and D.A. Lados, Fatigue Behavior of A356-T6 Aluminum Cast Alloys. Part I. Effect of Casting Defects, J. light Metals, 2001, 1(1), p 73–84.CrossRef Q.G. Wang, D. Apelian, and D.A. Lados, Fatigue Behavior of A356-T6 Aluminum Cast Alloys. Part I. Effect of Casting Defects, J. light Metals, 2001, 1(1), p 73–84.CrossRef
18.
go back to reference Y. Sun, S.P. Pang, X.R. Liu, Z.R. Yang, and G.X. Sun, Nucleation and Growth of Eutectic Cell in Hypoeutectic Al-Si Alloy, Trans. Nonferrous Metal Soc., 2011, 21, p 2186–2191.CrossRef Y. Sun, S.P. Pang, X.R. Liu, Z.R. Yang, and G.X. Sun, Nucleation and Growth of Eutectic Cell in Hypoeutectic Al-Si Alloy, Trans. Nonferrous Metal Soc., 2011, 21, p 2186–2191.CrossRef
19.
go back to reference B.Q. Zhang, H.S. Fang, J.G. Li, and H.T. Ma, Investigation on Microstructures and Refining Performances of Newly Developed Al-Ti-C Grain Refining Master Alloys, J. Mater. Sci. Lett., 2000, 19, p 1485–1489.CrossRef B.Q. Zhang, H.S. Fang, J.G. Li, and H.T. Ma, Investigation on Microstructures and Refining Performances of Newly Developed Al-Ti-C Grain Refining Master Alloys, J. Mater. Sci. Lett., 2000, 19, p 1485–1489.CrossRef
20.
go back to reference G.S. Gan, L. Zhang, S.Y. Bei, Y. Lu, and B. Yang, Effect of TiB2 Addition on Microstructure of Spray-Formed Si-30Al Composite, Trans. Nonferrous Metal Soc., 2011, 21, p 2242–2247.CrossRef G.S. Gan, L. Zhang, S.Y. Bei, Y. Lu, and B. Yang, Effect of TiB2 Addition on Microstructure of Spray-Formed Si-30Al Composite, Trans. Nonferrous Metal Soc., 2011, 21, p 2242–2247.CrossRef
21.
go back to reference A.K. Dahle, K. Nogita, S.D. Mcdonald, C. Dinnis, and L. Lu, Eutectic Modification and Microstructure Development in Al-Si Alloys, Mater. Sci. Eng. A, 2005, 413, p 243–248.CrossRef A.K. Dahle, K. Nogita, S.D. Mcdonald, C. Dinnis, and L. Lu, Eutectic Modification and Microstructure Development in Al-Si Alloys, Mater. Sci. Eng. A, 2005, 413, p 243–248.CrossRef
22.
go back to reference F.Y. Cao, Y.D. Jia, K.G. Prashanth, P. Ma, J.S. Liu, S. Scudino, F. Huang, J. Eckert, and J. Sun, Evolution of Microstructure and Mechanical Properties of as-Cast Al-50Si Alloy Due to Heat Treatment and P Modifier Content, Mater. Des., 2015, 74, p 150–156.CrossRef F.Y. Cao, Y.D. Jia, K.G. Prashanth, P. Ma, J.S. Liu, S. Scudino, F. Huang, J. Eckert, and J. Sun, Evolution of Microstructure and Mechanical Properties of as-Cast Al-50Si Alloy Due to Heat Treatment and P Modifier Content, Mater. Des., 2015, 74, p 150–156.CrossRef
23.
go back to reference S.Z. Lu and A. Hellawell, The Mechanism of Silicon Modification in Aluminum-Silicon Alloys: Impurity Induced Twinning, Metall. Mater. Trans. A, 1987, 18, p 1721–1733.CrossRef S.Z. Lu and A. Hellawell, The Mechanism of Silicon Modification in Aluminum-Silicon Alloys: Impurity Induced Twinning, Metall. Mater. Trans. A, 1987, 18, p 1721–1733.CrossRef
24.
go back to reference S.Z. Lu and A. Hellawell, Modification of Al-Si Alloys: Microstructure, Thermal Analysis, and Mechanisms, JOM-US, 1995, 47, p 38–40.CrossRef S.Z. Lu and A. Hellawell, Modification of Al-Si Alloys: Microstructure, Thermal Analysis, and Mechanisms, JOM-US, 1995, 47, p 38–40.CrossRef
25.
go back to reference A. Hellawell, The Growth and Structure of Eutectics with Silicon and Germanium, Prog. Mater. Sci., 1970, 15, p 3–78.CrossRef A. Hellawell, The Growth and Structure of Eutectics with Silicon and Germanium, Prog. Mater. Sci., 1970, 15, p 3–78.CrossRef
26.
go back to reference F. Mao, S.Z. Wei, C. Chen, C. Zhang, X.D. Wang, and Z.Q. Cao, Modification of the Silicon Phase and Mechanical Properties in Al-40Zn-6Si Alloy with Eu Addition, Mater. Des., 2020, 186, p 108268.CrossRef F. Mao, S.Z. Wei, C. Chen, C. Zhang, X.D. Wang, and Z.Q. Cao, Modification of the Silicon Phase and Mechanical Properties in Al-40Zn-6Si Alloy with Eu Addition, Mater. Des., 2020, 186, p 108268.CrossRef
27.
go back to reference B. Jiang, Z.S. Ji, M.L. Hu, M.L. Hu, H.Y. Xu, and S. Xu, A Novel Modifier on Eutectic Si and Mechanical Properties of Al-Si Alloy, Mater. Lett., 2019, 239, p 13–16.CrossRef B. Jiang, Z.S. Ji, M.L. Hu, M.L. Hu, H.Y. Xu, and S. Xu, A Novel Modifier on Eutectic Si and Mechanical Properties of Al-Si Alloy, Mater. Lett., 2019, 239, p 13–16.CrossRef
28.
go back to reference G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12, p 344–350.CrossRef G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12, p 344–350.CrossRef
29.
go back to reference C.S. Kim, I. Sohn, M. Nezafati, J.B. Ferguson, B.F. Schultz, Z. Bajestani-Gohari, P.K. Rohatgi, and K. Cho, Prediction Models for the Yield Strength of Particle-Reinforced Unimodal Pure Magnesium (Mg) Metal Matrix Nanocomposites (MMNCs), J. Mater. Sci., 2013, 48, p 4191–4204.CrossRef C.S. Kim, I. Sohn, M. Nezafati, J.B. Ferguson, B.F. Schultz, Z. Bajestani-Gohari, P.K. Rohatgi, and K. Cho, Prediction Models for the Yield Strength of Particle-Reinforced Unimodal Pure Magnesium (Mg) Metal Matrix Nanocomposites (MMNCs), J. Mater. Sci., 2013, 48, p 4191–4204.CrossRef
30.
go back to reference L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X.L. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, and X.C. Li, Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles, Nature, 2015, 528, p 539–543.CrossRef L.Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X.L. Ma, S. Bhowmick, J.M. Yang, S. Mathaudhu, and X.C. Li, Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles, Nature, 2015, 528, p 539–543.CrossRef
31.
go back to reference Y.X. Liu, R.C. Wang, C.Q. Peng, Z.Y. Cai, Z.H. Zhou, X.G. Li, and X.Y. Cao, Microstructures and Mechanical Properties of In-Situ TiB2/Al-xSi-03 Mg Composites, Trans. Nonferrous Metals Soc. China, 2021, 31(2), p 331–344.CrossRef Y.X. Liu, R.C. Wang, C.Q. Peng, Z.Y. Cai, Z.H. Zhou, X.G. Li, and X.Y. Cao, Microstructures and Mechanical Properties of In-Situ TiB2/Al-xSi-03 Mg Composites, Trans. Nonferrous Metals Soc. China, 2021, 31(2), p 331–344.CrossRef
32.
go back to reference S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng. R Rep., 2000, 29, p 49–113.CrossRef S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng. R Rep., 2000, 29, p 49–113.CrossRef
33.
go back to reference A. Rezaei and H.M. Hosseini, Evolution of Microstructure and Mechanical Properties of A1-5 wt.% Ti Composite Fabricated by P/M and Hot Extrusion: Effect of Heat Treatment, Mater. Sci. Eng. A., 2017, 689, p 166–175.CrossRef A. Rezaei and H.M. Hosseini, Evolution of Microstructure and Mechanical Properties of A1-5 wt.% Ti Composite Fabricated by P/M and Hot Extrusion: Effect of Heat Treatment, Mater. Sci. Eng. A., 2017, 689, p 166–175.CrossRef
34.
go back to reference Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto, Grain Refining Mechanism in the Al/Al-Ti-B System, Acta Mater., 2015, 84, p 292–304.CrossRef Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto, Grain Refining Mechanism in the Al/Al-Ti-B System, Acta Mater., 2015, 84, p 292–304.CrossRef
35.
go back to reference J.S. Wang, A. Horsfield, U. Schwingenschlögl, and P.D. Lee, Heterogeneous Nucleation of Solid Al from the Melt by TiB2 and Al3Ti: An Ab Initio Molecular Dynamics Study, Phys. Rev. B, 2010, 82, p 184203.CrossRef J.S. Wang, A. Horsfield, U. Schwingenschlögl, and P.D. Lee, Heterogeneous Nucleation of Solid Al from the Melt by TiB2 and Al3Ti: An Ab Initio Molecular Dynamics Study, Phys. Rev. B, 2010, 82, p 184203.CrossRef
Metadata
Title
Effect of Composite Refining Modifier on Microstructure and Properties of AlSi10Mg Alloy
Authors
Ruiheng Li
Yicheng Feng
Yuanke Fu
Sicong Zhao
Lei Wang
Erjun Guo
Publication date
22-12-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 19/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07742-z

Premium Partners