Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 3/2019

02-01-2019

Effect of curing agent and curing substrate on low temperature curable silver conductive adhesive

Authors: Xiao-Qing Wang, Wei-Ping Gan, Feng Xiang, Bi-Yuan Li

Published in: Journal of Materials Science: Materials in Electronics | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Soldering technology is popularly used as a traditional connecting technology in electronics industry. But this technology often hurts components more or less due to its high temperature processing. Electrical conductive adhesive as a substitute for solder in connecting technology, can reduce harm to components. When preparing curable conductive adhesive, curing agent is necessary for curing process. But conductive adhesives with different types of curing agents have different curing temperatures, curing time and electric conductivity. In this paper, three types of conductive adhesives with different curing agents named dicyandiamide, p-hydroxyphenylacetic acid (HPA), tetraethylenepentamine are being compared. Through resistivity test and differential thermal analysis (DTA), it is found that the conductive adhesive sample using tetraethylenepentamine has the lowest curing temperature and resistivity. Therefore, using tetraethylenepentamine to prepare curable conductive adhesive will be a better choice compared with other two curing agents.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Xiao, Z. Wu, L. Liu et al., Protection against lead-free solder in wave-soldering by Ti/TiC coatings prepared by filtered cathodic arc deposition. Surf. Coat. Technol. 312, 7–12 (2017)CrossRef S. Xiao, Z. Wu, L. Liu et al., Protection against lead-free solder in wave-soldering by Ti/TiC coatings prepared by filtered cathodic arc deposition. Surf. Coat. Technol. 312, 7–12 (2017)CrossRef
2.
go back to reference M.T. Zarmai, N.N. Ekere, C.F. Oduoza et al., Evaluation of thermo-mechanical damage and fatigue life of solar cell solder interconnections. Robot. Comput. Integr. Manuf. 47, 37–43 (2017)CrossRef M.T. Zarmai, N.N. Ekere, C.F. Oduoza et al., Evaluation of thermo-mechanical damage and fatigue life of solar cell solder interconnections. Robot. Comput. Integr. Manuf. 47, 37–43 (2017)CrossRef
3.
go back to reference D.H. Jung, A. Sharma, J.P. Jung, Influence of dual ceramic nanomaterials on the solderability and interfacial reactions between lead-free Sn–Ag–Cu and a Cu conductor. J. Alloy. Compd. 743, 300–313 (2018)CrossRef D.H. Jung, A. Sharma, J.P. Jung, Influence of dual ceramic nanomaterials on the solderability and interfacial reactions between lead-free Sn–Ag–Cu and a Cu conductor. J. Alloy. Compd. 743, 300–313 (2018)CrossRef
4.
go back to reference M.J. Rizvi, H. Lu, C. Bailey, Modeling the diffusion of solid copper into liquid solder alloys. Thin Solid Films 517(5), 1686–1689 (2009)CrossRef M.J. Rizvi, H. Lu, C. Bailey, Modeling the diffusion of solid copper into liquid solder alloys. Thin Solid Films 517(5), 1686–1689 (2009)CrossRef
5.
go back to reference X.M. Xie, T.B. Wang, J.Z. Shi et al., A novel high performance die attach. Solder. Surf. Mt. Technol. 12(1), 40–44 (2000)CrossRef X.M. Xie, T.B. Wang, J.Z. Shi et al., A novel high performance die attach. Solder. Surf. Mt. Technol. 12(1), 40–44 (2000)CrossRef
6.
go back to reference M.J. Brand, E.I. Kolp, P. Berg et al., Electrical resistances of soldered battery cell connections. J. Energy Storage 12, 45–54 (2017)CrossRef M.J. Brand, E.I. Kolp, P. Berg et al., Electrical resistances of soldered battery cell connections. J. Energy Storage 12, 45–54 (2017)CrossRef
7.
go back to reference P.M. Hall, J.M. Morabito, Recent advances in solder bond technology for microelectronic packaging. Thin Solid Films 72(3), 433–442 (1980)CrossRef P.M. Hall, J.M. Morabito, Recent advances in solder bond technology for microelectronic packaging. Thin Solid Films 72(3), 433–442 (1980)CrossRef
8.
go back to reference H.T. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44(5), 1141–1158 (2009)CrossRef H.T. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44(5), 1141–1158 (2009)CrossRef
9.
go back to reference P.K.M. Srinath, P.B. Aswath, Impression creep of monolithic and composite lead free solders. J. Mater. Sci. 42(17), 7592–7600 (2007)CrossRef P.K.M. Srinath, P.B. Aswath, Impression creep of monolithic and composite lead free solders. J. Mater. Sci. 42(17), 7592–7600 (2007)CrossRef
10.
go back to reference S.K. Kang, A.K. Sarkhel, Lead (Pb)-free solders for electronic packaging. J. Electron. Mater. 23(8), 701–707 (1994)CrossRef S.K. Kang, A.K. Sarkhel, Lead (Pb)-free solders for electronic packaging. J. Electron. Mater. 23(8), 701–707 (1994)CrossRef
11.
go back to reference S. Cheng, C.M. Huang, M. Pecht, A review of lead-free solders for electronics applications. Microelectron. Reliab. 75, 77–95 (2017)CrossRef S. Cheng, C.M. Huang, M. Pecht, A review of lead-free solders for electronics applications. Microelectron. Reliab. 75, 77–95 (2017)CrossRef
12.
go back to reference S.C. Kim, Y.H. Kim, Flip chip bonding with anisotropic conductive film (ACF) and nonconductive adhesive (NCA). Curr. Appl. Phys. 13, S14–S25 (2013)CrossRef S.C. Kim, Y.H. Kim, Flip chip bonding with anisotropic conductive film (ACF) and nonconductive adhesive (NCA). Curr. Appl. Phys. 13, S14–S25 (2013)CrossRef
13.
go back to reference D. Lu, Y. Sun, C.P. Wong, Conductive adhesives, in Wiley Encyclopedia of Electrical and Electronics Engineering (2013), pp. 1–12 D. Lu, Y. Sun, C.P. Wong, Conductive adhesives, in Wiley Encyclopedia of Electrical and Electronics Engineering (2013), pp. 1–12
14.
go back to reference W. Lin, X. Xi, C. Yu, Research of silver plating nano-graphite filled conductive adhesive. Synth. Met. 159(7), 619–624 (2009)CrossRef W. Lin, X. Xi, C. Yu, Research of silver plating nano-graphite filled conductive adhesive. Synth. Met. 159(7), 619–624 (2009)CrossRef
15.
go back to reference X.G. Mbuyise, E.A.A. Arbab, K. Kaviyarasu et al., Zinc oxide doped single wall carbon nanotubes in hole transport buffer layer. J. Alloy. Compd. 706, 344–350 (2017)CrossRef X.G. Mbuyise, E.A.A. Arbab, K. Kaviyarasu et al., Zinc oxide doped single wall carbon nanotubes in hole transport buffer layer. J. Alloy. Compd. 706, 344–350 (2017)CrossRef
16.
go back to reference C.A. Lu, P. Lin, H.C. Lin et al., Effects of metallo-organic decomposition agents on thermal decomposition and electrical conductivity of low-temperature-curing silver adhesive. Jpn. J. Appl. Phys. 45(9A), 6987–6992 (2006)CrossRef C.A. Lu, P. Lin, H.C. Lin et al., Effects of metallo-organic decomposition agents on thermal decomposition and electrical conductivity of low-temperature-curing silver adhesive. Jpn. J. Appl. Phys. 45(9A), 6987–6992 (2006)CrossRef
17.
go back to reference S.O. Oseni, K. Kaviyarasu, M. Maaza et al., ZnO:CNT assisted charge transport in PTB7: PCBM blend organic solar cell. J. Alloy. Compd. 748, 216–222 (2018)CrossRef S.O. Oseni, K. Kaviyarasu, M. Maaza et al., ZnO:CNT assisted charge transport in PTB7: PCBM blend organic solar cell. J. Alloy. Compd. 748, 216–222 (2018)CrossRef
18.
go back to reference B.S. Yim, J.M. Kim, Characteristics of isotropically conductive adhesive (ICA) filled with carbon nanotubes (CNTs) and low-melting-point alloy fillers. Mater. Trans. 51(12), 2329–2331 (2010)CrossRef B.S. Yim, J.M. Kim, Characteristics of isotropically conductive adhesive (ICA) filled with carbon nanotubes (CNTs) and low-melting-point alloy fillers. Mater. Trans. 51(12), 2329–2331 (2010)CrossRef
19.
go back to reference Y. Zhang, S. Qi, X. Wu et al., Electrically conductive adhesive based on acrylate resin filled with silver plating graphite nanosheet. Synth. Met. 161(5–6), 516–522 (2011)CrossRef Y. Zhang, S. Qi, X. Wu et al., Electrically conductive adhesive based on acrylate resin filled with silver plating graphite nanosheet. Synth. Met. 161(5–6), 516–522 (2011)CrossRef
20.
go back to reference J. Zhang, Y.M. Geng, L.G. Huang, Analysis of electrical characteristics for conductive particle in anisotropic conductive adhesive film (ACF) assembly. Future Intell. Inf. Syst. 86, 247–253 (2011) J. Zhang, Y.M. Geng, L.G. Huang, Analysis of electrical characteristics for conductive particle in anisotropic conductive adhesive film (ACF) assembly. Future Intell. Inf. Syst. 86, 247–253 (2011)
21.
go back to reference Y.C. Lin, J. Zhong, A review of the influencing factors on anisotropic conductive adhesives joining technology in electrical applications. J. Mater. Sci. 43(9), 3072–3093 (2008)CrossRef Y.C. Lin, J. Zhong, A review of the influencing factors on anisotropic conductive adhesives joining technology in electrical applications. J. Mater. Sci. 43(9), 3072–3093 (2008)CrossRef
22.
go back to reference C.M.L. Wu, J. Liu, N.H. Yeung, Reliability of ACF in flip-chip with various bump heights, in Proceedings of 4th International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing, IEEE (2000), pp. 101–106 C.M.L. Wu, J. Liu, N.H. Yeung, Reliability of ACF in flip-chip with various bump heights, in Proceedings of 4th International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing, IEEE (2000), pp. 101–106
23.
go back to reference R.L. Keusseyan, J.L. Dilday, Electric contact phenomena in conductive adhesive interconnections. Int. J. Microcircuits Electron Packaging 17(3), 44–49 (1994) R.L. Keusseyan, J.L. Dilday, Electric contact phenomena in conductive adhesive interconnections. Int. J. Microcircuits Electron Packaging 17(3), 44–49 (1994)
24.
go back to reference H.W. Cui, A. Kowalczyk, D.S. Li et al., High performance electrically conductive adhesives from functional epoxy, micron silver flakes, micron silver spheres and acidified single wall carbon nanotube for electronic package. Int. J. Adhes. Adhes. 44, 220–225 (2013)CrossRef H.W. Cui, A. Kowalczyk, D.S. Li et al., High performance electrically conductive adhesives from functional epoxy, micron silver flakes, micron silver spheres and acidified single wall carbon nanotube for electronic package. Int. J. Adhes. Adhes. 44, 220–225 (2013)CrossRef
25.
go back to reference J.I.J. Gonzales, M.G. Mena, Moisture and thermal degradation of cyanate-ester-based die attach material, in Proceedings of 47th Electronic Components and Technology Conference, IEEE (1997), pp. 525–535 J.I.J. Gonzales, M.G. Mena, Moisture and thermal degradation of cyanate-ester-based die attach material, in Proceedings of 47th Electronic Components and Technology Conference, IEEE (1997), pp. 525–535
26.
go back to reference F. Tan, X. Qiao, J. Chen et al., Effects of coupling agents on the properties of epoxy-based electrically conductive adhesives. Int. J. Adhes. Adhes. 26(6), 406–413 (2006)CrossRef F. Tan, X. Qiao, J. Chen et al., Effects of coupling agents on the properties of epoxy-based electrically conductive adhesives. Int. J. Adhes. Adhes. 26(6), 406–413 (2006)CrossRef
27.
go back to reference D.I. Tee, M. Mariatti, A. Azizan et al., Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites. Compos. Sci. Technol. 67(11), 2584–2591 (2007)CrossRef D.I. Tee, M. Mariatti, A. Azizan et al., Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites. Compos. Sci. Technol. 67(11), 2584–2591 (2007)CrossRef
28.
go back to reference M. Morita, Y. Kuwahara, M. Goto, Preparation and properties of siloxane polyimide films containing silver nanoparticles and microparticles as conducting adhesive films. J. Mater. Sci.: Mater. Electron. 22(5), 531–537 (2011) M. Morita, Y. Kuwahara, M. Goto, Preparation and properties of siloxane polyimide films containing silver nanoparticles and microparticles as conducting adhesive films. J. Mater. Sci.: Mater. Electron. 22(5), 531–537 (2011)
29.
go back to reference L. Gong, J. Lu, Z. Ye, Study on the structural, electrical, optical, adhesive properties and stability of Ga-doped ZnO transparent conductive films deposited on polymer substrates at room temperature. J. Mater. Sci.: Mater. Electron. 24(1), 148–152 (2013) L. Gong, J. Lu, Z. Ye, Study on the structural, electrical, optical, adhesive properties and stability of Ga-doped ZnO transparent conductive films deposited on polymer substrates at room temperature. J. Mater. Sci.: Mater. Electron. 24(1), 148–152 (2013)
30.
go back to reference Q. Guo, Effect of curing agent on the phase behaviour of epoxy resin/phenoxy blends. Polymer 36(25), 4753–4760 (1995)CrossRef Q. Guo, Effect of curing agent on the phase behaviour of epoxy resin/phenoxy blends. Polymer 36(25), 4753–4760 (1995)CrossRef
31.
go back to reference F.Y.C. Boey, B.H. Yap, L. Chia, Microwave curing of epoxy-amine system—effect of curing agent on the rate enhancement. Polym. Test. 18(2), 93–109 (1999)CrossRef F.Y.C. Boey, B.H. Yap, L. Chia, Microwave curing of epoxy-amine system—effect of curing agent on the rate enhancement. Polym. Test. 18(2), 93–109 (1999)CrossRef
32.
go back to reference F.Y.C. Boey, B.H. Yap, Microwave curing of an epoxy–amine system: effect of curing agent on the glass-transition temperature. Polym. Test. 20(8), 837–845 (2001)CrossRef F.Y.C. Boey, B.H. Yap, Microwave curing of an epoxy–amine system: effect of curing agent on the glass-transition temperature. Polym. Test. 20(8), 837–845 (2001)CrossRef
33.
go back to reference N. Jayaprakash, J.J. Vijaya, K. Kaviyarasu et al., Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. J. Photochem. Photobiol. 169, 178–185 (2017)CrossRef N. Jayaprakash, J.J. Vijaya, K. Kaviyarasu et al., Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. J. Photochem. Photobiol. 169, 178–185 (2017)CrossRef
34.
go back to reference K. Kaviyarasu, E. Manikandan, J. Kennedy et al., A comparative study on the morphological features of highly ordered MgO: AgO nanocube arrays prepared via a hydrothermal method. RSC Adv. 5(100), 82421–82428 (2015)CrossRef K. Kaviyarasu, E. Manikandan, J. Kennedy et al., A comparative study on the morphological features of highly ordered MgO: AgO nanocube arrays prepared via a hydrothermal method. RSC Adv. 5(100), 82421–82428 (2015)CrossRef
Metadata
Title
Effect of curing agent and curing substrate on low temperature curable silver conductive adhesive
Authors
Xiao-Qing Wang
Wei-Ping Gan
Feng Xiang
Bi-Yuan Li
Publication date
02-01-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 3/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0559-y

Other articles of this Issue 3/2019

Journal of Materials Science: Materials in Electronics 3/2019 Go to the issue