Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

20-09-2023 | Original Research Article

Effect of Diamond Morphology on Construction of Thermal Conduction Path in Flexible Thermal Interface Materials

Authors: Haodong Wang, Fei Huang, Wenbo Qin, Dengfeng Shu, Jiachen Sun, Jiansheng Li, Dezhong Meng, Wen Yue, Jiajie Kang, Chengbiao Wang

Published in: Journal of Materials Engineering and Performance

Log in

Abstract

The increasing demand for chip heat dissipation has led to more challenges in designing and regulating thermal interface materials with high performance. It is crucial to have a comprehensive understanding of the design and mechanism of thermal conduction path built by thermal conductive fillers. Diamond, in particular, has garnered significant attention. In this study, we constructed three-dimensional particle random distribution models of diamond/silicone rubber composites based on the morphological characteristics of common industrial-grade diamond. We also conducted experiments with different morphologies and filling amounts of diamonds in silicone rubber to better understand the effect of diamond fillers on the thermal conductivity of the composites. From the model simulation, thermal conductivity and actual LED temperature rise tests, the study reveals that broken single-crystal diamond with lamellae or rod-like with large aspect ratio or radius-thickness ratio is easier to form thermal transfer paths than spherical or spherical-like diamond under low filling content. Ultimately, the silicone rubber composites filled with intact hexa-octahedral single-crystal diamonds achieve the highest thermal conductivity as a result of the formation of more comprehensive three-dimensional heat dissipation network (1.357 W/(m K), 80 wt.%). In comparison with silicone rubber composites filled with spherical Al2O3 (0.995 W/(m K), 80wt.%) and pure silicone rubber (0.21 W/(m K), 80 wt.%), the thermal conductivity increases by 36% and 546%, respectively. The revelation of the construction law and mechanism of different diamond morphologies on the thermal conduction path of thermal interface materials provides a theoretical basis for broadening the application of diamond in the design of thermal interface materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Guo, S. Cheng, W. Cai, Y. Zhang, and X. Zhang, A Review of Carbon-Based Thermal Interface Materials: Mechanism, Thermal Measurements and Thermal Properties, Mater. Des., 2021, 209, p 209–228. CrossRef X. Guo, S. Cheng, W. Cai, Y. Zhang, and X. Zhang, A Review of Carbon-Based Thermal Interface Materials: Mechanism, Thermal Measurements and Thermal Properties, Mater. Des., 2021, 209, p 209–228. CrossRef
2.
go back to reference S.S. Akhtar, An Integrated Approach to Design and Develop High Performance Polymer-Composite Thermal Interface Material, Polymer, 2021, 13, p 807–831. CrossRef S.S. Akhtar, An Integrated Approach to Design and Develop High Performance Polymer-Composite Thermal Interface Material, Polymer, 2021, 13, p 807–831. CrossRef
3.
go back to reference W. Oh, J.S. Bae, and H.S. Moon, Thermal Conduction Characteristics of Silicone Composites Including Ultrasonic-Treated Graphite, J Compos. Mater., 2022, 56, p 619–626. CrossRef W. Oh, J.S. Bae, and H.S. Moon, Thermal Conduction Characteristics of Silicone Composites Including Ultrasonic-Treated Graphite, J Compos. Mater., 2022, 56, p 619–626. CrossRef
4.
go back to reference Q. Wu, W. Li, C. Liu, Y. Xu, G. Li, H. Zhang, J. Huang, and J. Miao, Carbon Fiber Reinforced Elastomeric Thermal Interface Materials for Spacecraft, Carbon, 2022, 187, p 432–438. CrossRef Q. Wu, W. Li, C. Liu, Y. Xu, G. Li, H. Zhang, J. Huang, and J. Miao, Carbon Fiber Reinforced Elastomeric Thermal Interface Materials for Spacecraft, Carbon, 2022, 187, p 432–438. CrossRef
5.
go back to reference R. Wang, C. Xie, B. Gou, H. Xu, and J. Zhou, Significant Thermal Conductivity Enhancement of Polymer Nanocomposites At Low Content Via Graphene Aerogel, Mater. Lett., 2021, 305, 130771. CrossRef R. Wang, C. Xie, B. Gou, H. Xu, and J. Zhou, Significant Thermal Conductivity Enhancement of Polymer Nanocomposites At Low Content Via Graphene Aerogel, Mater. Lett., 2021, 305, 130771. CrossRef
6.
go back to reference D. Guo, L.C. Li, Q. Chen, L. Tu, B. Wu, C.J. Luo, W.H. Lv, Z.R. Xu, H. Yang, Z.Q. Liao, and Y.H. Chen, Simultaneous Improvement of Interface Compatibility and Thermal Conductivity for Thermally Conductive ABS/Al 2O 3 Composites by Using Electron Beam Radiation Processing, J. Polym. Res., 2021, 28, p 262. CrossRef D. Guo, L.C. Li, Q. Chen, L. Tu, B. Wu, C.J. Luo, W.H. Lv, Z.R. Xu, H. Yang, Z.Q. Liao, and Y.H. Chen, Simultaneous Improvement of Interface Compatibility and Thermal Conductivity for Thermally Conductive ABS/Al 2O 3 Composites by Using Electron Beam Radiation Processing, J. Polym. Res., 2021, 28, p 262. CrossRef
7.
go back to reference Y. Zhu, X. Shen, D. Bao, Y. Shi, H. Huang, D. Zhao, and H. Wang, Nano SiC Enhancement in the BN Micro Structure for High Thermal Conductivity Epoxy Composite, J. Polym. Res., 2021, 28, p 387. CrossRef Y. Zhu, X. Shen, D. Bao, Y. Shi, H. Huang, D. Zhao, and H. Wang, Nano SiC Enhancement in the BN Micro Structure for High Thermal Conductivity Epoxy Composite, J. Polym. Res., 2021, 28, p 387. CrossRef
8.
go back to reference K. Dong, N. Sheng, D. Zou, C. Wang, K. Shimono, T. Akiyama, and T. Nomura, A High-Thermal-Conductivity, High-Durability Phase-Change Composite Using a Carbon Fibre Sheet As a Supporting Matrix, Appl. Energy, 2020, 264, 114685. CrossRef K. Dong, N. Sheng, D. Zou, C. Wang, K. Shimono, T. Akiyama, and T. Nomura, A High-Thermal-Conductivity, High-Durability Phase-Change Composite Using a Carbon Fibre Sheet As a Supporting Matrix, Appl. Energy, 2020, 264, 114685. CrossRef
9.
go back to reference Y. Hu, S.W. Chiang, X. Chu, J. Li, and H. Du, Vertically Aligned Carbon Nanotubes Grown on Reduced Graphene Oxide As High-Performance Thermal Interface Materials, J. Mater. Sci., 2020, 55, p 9414–9424. CrossRef Y. Hu, S.W. Chiang, X. Chu, J. Li, and H. Du, Vertically Aligned Carbon Nanotubes Grown on Reduced Graphene Oxide As High-Performance Thermal Interface Materials, J. Mater. Sci., 2020, 55, p 9414–9424. CrossRef
10.
go back to reference J. Dong, L. Cao, Y. Li, Z. Wu, and C. Teng, Largely Improved Thermal Conductivity of PI/BNNS Nanocomposites Obtained by Constructing a 3D BNNS Network and Filling it with AgNW as the Thermally Conductive Bridges, Compos. Sci. Technol., 2020, 196, 108242. CrossRef J. Dong, L. Cao, Y. Li, Z. Wu, and C. Teng, Largely Improved Thermal Conductivity of PI/BNNS Nanocomposites Obtained by Constructing a 3D BNNS Network and Filling it with AgNW as the Thermally Conductive Bridges, Compos. Sci. Technol., 2020, 196, 108242. CrossRef
11.
go back to reference M. Sun, G. Gao, B. Dai, L. Yang, K. Liu, S. Zhang, S. Guo, J. Han, and J. Zhu, Enhancement in Thermal Conductivity of Polymer Composites Through Construction of Graphene/Nanodiamond Bi-Network Thermal Transfer Paths, Mater. Lett., 2020, 271, 127772. CrossRef M. Sun, G. Gao, B. Dai, L. Yang, K. Liu, S. Zhang, S. Guo, J. Han, and J. Zhu, Enhancement in Thermal Conductivity of Polymer Composites Through Construction of Graphene/Nanodiamond Bi-Network Thermal Transfer Paths, Mater. Lett., 2020, 271, 127772. CrossRef
12.
go back to reference Q. Chen, P. Zhang, T. Ouyang, X. Zhang, and G. Qin, Ultra-High Thermal Conductivities of Tetrahedral Carbon Allotropes with Non-simple Structures, Phys. Chem. Chem. Phys., 2021, 23, p 24550–24556. CrossRef Q. Chen, P. Zhang, T. Ouyang, X. Zhang, and G. Qin, Ultra-High Thermal Conductivities of Tetrahedral Carbon Allotropes with Non-simple Structures, Phys. Chem. Chem. Phys., 2021, 23, p 24550–24556. CrossRef
13.
go back to reference H. Dong, B. Wen, Y. Zhang, and R. Melnik, Thermal Conductivity of Diamond/SiC Nano-Polycrystalline Composites and Phonon Scattering at Interfaces, ACS Omega, 2017, 2, p 2467–2495. CrossRef H. Dong, B. Wen, Y. Zhang, and R. Melnik, Thermal Conductivity of Diamond/SiC Nano-Polycrystalline Composites and Phonon Scattering at Interfaces, ACS Omega, 2017, 2, p 2467–2495. CrossRef
14.
go back to reference L. Shao, L. Shi, X. Li, N. Song, and P. Ding, Synergistic Effect of BN and Graphene Nanosheets in 3D Framework on the Enhancement of Thermal Conductive Properties of Polymeric Composites, Compos. Sci. Technol., 2016, 135, p 83–91. CrossRef L. Shao, L. Shi, X. Li, N. Song, and P. Ding, Synergistic Effect of BN and Graphene Nanosheets in 3D Framework on the Enhancement of Thermal Conductive Properties of Polymeric Composites, Compos. Sci. Technol., 2016, 135, p 83–91. CrossRef
15.
go back to reference L. Zhang, W. Zhu, Y. Huang, and S. Qi, Synergetic Effects of Silver Nanowires and Graphene Oxide on Thermal Conductivity of Epoxy Composites, Nanomaterials, 2019, 9, p 1264–1279. CrossRef L. Zhang, W. Zhu, Y. Huang, and S. Qi, Synergetic Effects of Silver Nanowires and Graphene Oxide on Thermal Conductivity of Epoxy Composites, Nanomaterials, 2019, 9, p 1264–1279. CrossRef
16.
go back to reference H. Ma, B. Gao, M. Wang, Z. Yuan, and Y. Feng, Strategies for Enhancing Thermal Conductivity of Polymer-Based Thermal Interface Materials: A Review, J. Mater. Sci., 2021, 56, p 1064–1086. CrossRef H. Ma, B. Gao, M. Wang, Z. Yuan, and Y. Feng, Strategies for Enhancing Thermal Conductivity of Polymer-Based Thermal Interface Materials: A Review, J. Mater. Sci., 2021, 56, p 1064–1086. CrossRef
17.
go back to reference H.S. Kim, J.M. Kim, C. Yang, and S.Y. Kim, Synergistic Enhancement of Thermal Conductivity in Composites Filled with Expanded Graphite and Multi-Walled Carbon Nanotube Fillers via Melt-Compounding Based on Polymerizable Low-Viscosity Oligomer Matrix, J. Alloys Compd., 2017, 690, p 274–280. CrossRef H.S. Kim, J.M. Kim, C. Yang, and S.Y. Kim, Synergistic Enhancement of Thermal Conductivity in Composites Filled with Expanded Graphite and Multi-Walled Carbon Nanotube Fillers via Melt-Compounding Based on Polymerizable Low-Viscosity Oligomer Matrix, J. Alloys Compd., 2017, 690, p 274–280. CrossRef
18.
go back to reference Y. Sun, L. Zhou, Y. Han, L. Cui, and L. Chen, A New Anisotropic Thermal Conductivity Equation for h-BN/Polymer Composites Using Finite Element Analysis, Int. J. Heat. Mass Tran., 2020, 160, 120157. CrossRef Y. Sun, L. Zhou, Y. Han, L. Cui, and L. Chen, A New Anisotropic Thermal Conductivity Equation for h-BN/Polymer Composites Using Finite Element Analysis, Int. J. Heat. Mass Tran., 2020, 160, 120157. CrossRef
19.
go back to reference L. Ich and A. Viet, An Investigation on Effective Thermal Conductivity of Hybrid-Filler Polymer Composites Under Effects of Random Particle Distribution, Particle Size and Thermal Contact Resistance, Int. J. Heat. Mass Tran., 2019, 144, 118605. CrossRef L. Ich and A. Viet, An Investigation on Effective Thermal Conductivity of Hybrid-Filler Polymer Composites Under Effects of Random Particle Distribution, Particle Size and Thermal Contact Resistance, Int. J. Heat. Mass Tran., 2019, 144, 118605. CrossRef
20.
go back to reference M. Zeneli, I. Malgarinos, A. Nikolopoulos, N. Nikolopoulos, P. Grammelis, S. Karellas, and E. Kakaras, Numerical Simulation of a Silicon Based Latent Heat Thermal Energy Storage System Operating at Ultra-High Temperatures, Appl. Energy, 2019, 242, p 837–853. CrossRef M. Zeneli, I. Malgarinos, A. Nikolopoulos, N. Nikolopoulos, P. Grammelis, S. Karellas, and E. Kakaras, Numerical Simulation of a Silicon Based Latent Heat Thermal Energy Storage System Operating at Ultra-High Temperatures, Appl. Energy, 2019, 242, p 837–853. CrossRef
21.
go back to reference W. Zhou, S. Qi, H. Li, and S. Shao, Study on Insulating Thermal Conductive BN/HDPE Composites, Thermochim. Acta, 2007, 452, p 36–42. CrossRef W. Zhou, S. Qi, H. Li, and S. Shao, Study on Insulating Thermal Conductive BN/HDPE Composites, Thermochim. Acta, 2007, 452, p 36–42. CrossRef
22.
go back to reference T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach, Int. J. Solids. Struct., 2003, 40, p 3647–3679. CrossRef T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach, Int. J. Solids. Struct., 2003, 40, p 3647–3679. CrossRef
23.
go back to reference D. Trias, J. Costa, A. Turon, and J.E. Hurtado, Determination of the Critical Size of Astatistical Representative Volume Element (SRVE) for Carbon Reinforced Polymers, Acta Mater., 2006, 54, p 3471–3484. CrossRef D. Trias, J. Costa, A. Turon, and J.E. Hurtado, Determination of the Critical Size of Astatistical Representative Volume Element (SRVE) for Carbon Reinforced Polymers, Acta Mater., 2006, 54, p 3471–3484. CrossRef
24.
go back to reference B. Banerjee, C.M. Cady, and D.O. Adams, Micromechanics Simulations of Glass-Estane Mock Polymer Bonded Explosives, Model. Simul. Mater. Sci. Eng., 2003, 11, p 457–475. CrossRef B. Banerjee, C.M. Cady, and D.O. Adams, Micromechanics Simulations of Glass-Estane Mock Polymer Bonded Explosives, Model. Simul. Mater. Sci. Eng., 2003, 11, p 457–475. CrossRef
25.
go back to reference J. Wu, X. Song, Y. Gong, W. Yang, and X. Bian, Analysis of the Heat Conduction Mechanism for Al2O3/Silicone Rubber Composite Material with FEM Based on Experiment Observations, Compos Sci Technol., 2021, 210, 108809. CrossRef J. Wu, X. Song, Y. Gong, W. Yang, and X. Bian, Analysis of the Heat Conduction Mechanism for Al2O3/Silicone Rubber Composite Material with FEM Based on Experiment Observations, Compos Sci Technol., 2021, 210, 108809. CrossRef
26.
go back to reference D. Marcos-Gómez, J. Ching-Lloyd, M.R. Elizalde, W.J. Clegg, and J.M. Molina-Aldareguia, Predicting the Thermal Conductivity of Composite Materials with Imperfect Interfaces, Compos. Sci. Technol., 2010, 70, p 2276–2283. CrossRef D. Marcos-Gómez, J. Ching-Lloyd, M.R. Elizalde, W.J. Clegg, and J.M. Molina-Aldareguia, Predicting the Thermal Conductivity of Composite Materials with Imperfect Interfaces, Compos. Sci. Technol., 2010, 70, p 2276–2283. CrossRef
27.
go back to reference Y.J. Kwon, J.B. Park, Y.P. Jeon, J.Y. Hong, and J.U. Lee, A Review of Polymer Composites Based on Carbon Fillers for Thermal Management Applications: Design Preparation, and Properties, Polymers, 2021, 13, p 1312–1326. CrossRef Y.J. Kwon, J.B. Park, Y.P. Jeon, J.Y. Hong, and J.U. Lee, A Review of Polymer Composites Based on Carbon Fillers for Thermal Management Applications: Design Preparation, and Properties, Polymers, 2021, 13, p 1312–1326. CrossRef
28.
go back to reference M.U. Siddiqui and A.F.M. Arif, Estimation and Optimisation of Effective Thermal Conductivity For Polymer Matrix Composites with Hybrid Inclusions, J. Compos. Mater., 2018, 52, p 2139–2148. CrossRef M.U. Siddiqui and A.F.M. Arif, Estimation and Optimisation of Effective Thermal Conductivity For Polymer Matrix Composites with Hybrid Inclusions, J. Compos. Mater., 2018, 52, p 2139–2148. CrossRef
29.
go back to reference W. Qi, M. Liu, J. Wu, Q. Xie, L. Chen, X. Yang, B. Shen, X. Bian, and W. Song, Promoting the Thermal Transport Via Understanding the Intrinsic Relation Between Thermal Conductivity and Interfacial Contact Probability in the Polymeric Composites with Hybrid Fillers, Compos. B, 2022, 232, 109613. CrossRef W. Qi, M. Liu, J. Wu, Q. Xie, L. Chen, X. Yang, B. Shen, X. Bian, and W. Song, Promoting the Thermal Transport Via Understanding the Intrinsic Relation Between Thermal Conductivity and Interfacial Contact Probability in the Polymeric Composites with Hybrid Fillers, Compos. B, 2022, 232, 109613. CrossRef
Metadata
Title
Effect of Diamond Morphology on Construction of Thermal Conduction Path in Flexible Thermal Interface Materials
Authors
Haodong Wang
Fei Huang
Wenbo Qin
Dengfeng Shu
Jiachen Sun
Jiansheng Li
Dezhong Meng
Wen Yue
Jiajie Kang
Chengbiao Wang
Publication date
20-09-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08724-5

Premium Partners