Skip to main content
Top
Published in: Tribology Letters 4/2021

01-12-2021 | Original Paper

Effect of Film Thickness on Slip and Traction Performances in Elastohydrodynamic Lubrication by a Molecular Dynamics Simulation

Authors: Junqin Shi, Junyi Wang, Xiaobin Yi, Xiaoli Fan

Published in: Tribology Letters | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The nonequilibrium molecular dynamics simulations were carried out to study the slip and traction properties of a traction fluid with effect of film thickness, under high-temperature and -pressure conditions. The thinnest film of about 14 Å presents a solid-like structure which shows a two-layer discrete distribution. The film of about 24 Å corresponds to the intermediate state between the solid-like and liquid phases. With the increasing film thickness, a continuous bulk structure confined by solid-like phases appears in the central region, leading to relatively loose interlayer structure. The velocity profile across the film was then analyzed to obtain the shear property. It indicates that the thinnest film shows a plug-slip shear, the relatively thick films show a shear localization, and the thickest film of about 86 Å shows a stick–slip phenomenon. The slip length increases and then reaches the maximum as the film thickness increases to 63 Å, which is related to the change of solid-like phase near the inner surface of slab. Finally, the traction coefficient illustrates the locally lowest value of 0.08 in the moderate film of 42 Å while the highest value is reached in the two-layer system. The inverse proportion relationship between slip length and traction coefficient is obtained. This study is helpful to understand the flow and traction characteristics and their relationship in elastohydrodynamic lubricant for the important use in new infinitely variable transmission systems.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Nilabh, S., Imtiaz, H.: A review on belt and chain continuously variable transmissions (CVT): dynamics and control. Mech. Mach. Theory 44(1), 19–41 (2009)CrossRef Nilabh, S., Imtiaz, H.: A review on belt and chain continuously variable transmissions (CVT): dynamics and control. Mech. Mach. Theory 44(1), 19–41 (2009)CrossRef
2.
go back to reference Ruan, J.G., Walker, P., Zhang, N.: A comparative study energy consumption and costs of battery electric vehicle transmissions. Appl. Energ. 165, 119–134 (2016)CrossRef Ruan, J.G., Walker, P., Zhang, N.: A comparative study energy consumption and costs of battery electric vehicle transmissions. Appl. Energ. 165, 119–134 (2016)CrossRef
3.
go back to reference Webster, M.N., Lee, G.H., Chang, L.: Effect of EHL contact conditions on the behavior of traction fluids. Tribol. Trans. 49(3), 439–448 (2006)CrossRef Webster, M.N., Lee, G.H., Chang, L.: Effect of EHL contact conditions on the behavior of traction fluids. Tribol. Trans. 49(3), 439–448 (2006)CrossRef
4.
go back to reference Gattinoni, C., Heyes, D.M., Lorenz, C.D., Dini, D.: Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure. Phys. Rev. E 88(5), 052406 (2013)CrossRef Gattinoni, C., Heyes, D.M., Lorenz, C.D., Dini, D.: Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure. Phys. Rev. E 88(5), 052406 (2013)CrossRef
5.
go back to reference Tsubouchi, T., Abe, K., Hat, H.: Quantitative correlation between molecular structures of traction fluids and their traction properties (part 1): influence of alkylene chain. Jpn. J. Tribol. 38, 403–410 (1993) Tsubouchi, T., Abe, K., Hat, H.: Quantitative correlation between molecular structures of traction fluids and their traction properties (part 1): influence of alkylene chain. Jpn. J. Tribol. 38, 403–410 (1993)
6.
go back to reference Tsubouchi, T., Abe, K., Hata, H.: Quantitative correlation between molecular structures of traction fluids and their traction properties (part 2): precise investigation into the molecular stiffness. Jpn. J. Tribol. 39, 373–381 (1994) Tsubouchi, T., Abe, K., Hata, H.: Quantitative correlation between molecular structures of traction fluids and their traction properties (part 2): precise investigation into the molecular stiffness. Jpn. J. Tribol. 39, 373–381 (1994)
7.
go back to reference Ewen, J.P., Gao, H.Y., Martin, M.H., Daniele, D.: Shear heating, flow, and friction of confined molecular fluids at high pressure. Phys. Chem. Chem. Phys. 21(10), 5813–5823 (2019)CrossRef Ewen, J.P., Gao, H.Y., Martin, M.H., Daniele, D.: Shear heating, flow, and friction of confined molecular fluids at high pressure. Phys. Chem. Chem. Phys. 21(10), 5813–5823 (2019)CrossRef
8.
go back to reference Desanker, M., He, X.L., Lu, J., Liu, P.Z., Pickens, D.B., Delferro, M., Marks, T.J., Chung, Y.W., Wang, Q.J.: Alkyl-cyclens as effective sulfur- and phosphorus-free friction modifiers for boundary lubrication. ACS Appl. Mater. Interfaces 9(10), 9118–9125 (2017)CrossRef Desanker, M., He, X.L., Lu, J., Liu, P.Z., Pickens, D.B., Delferro, M., Marks, T.J., Chung, Y.W., Wang, Q.J.: Alkyl-cyclens as effective sulfur- and phosphorus-free friction modifiers for boundary lubrication. ACS Appl. Mater. Interfaces 9(10), 9118–9125 (2017)CrossRef
9.
go back to reference Lu, X., Khonsari, M., Gelinck, E.: The Stribeck curve: experimental results and theoretical prediction. J. Tribol. 128(4), 789–794 (2006)CrossRef Lu, X., Khonsari, M., Gelinck, E.: The Stribeck curve: experimental results and theoretical prediction. J. Tribol. 128(4), 789–794 (2006)CrossRef
10.
go back to reference Granick, S.: Motions and relaxations of confined liquids. Science 253(5026), 1374–1379 (1991)CrossRef Granick, S.: Motions and relaxations of confined liquids. Science 253(5026), 1374–1379 (1991)CrossRef
11.
go back to reference Washizu, H., Ohmori, T.: Molecular dynamics simulations of elastohydrodynamic lubrication oil film. Lubr. Sci. 22(8), 323–340 (2010)CrossRef Washizu, H., Ohmori, T.: Molecular dynamics simulations of elastohydrodynamic lubrication oil film. Lubr. Sci. 22(8), 323–340 (2010)CrossRef
12.
go back to reference Neto, C., Evans, D.R., Bonaccurso, E., Butt, H., Craig, V.S.J.: Boundary slip in newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859–2897 (2005)CrossRef Neto, C., Evans, D.R., Bonaccurso, E., Butt, H., Craig, V.S.J.: Boundary slip in newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859–2897 (2005)CrossRef
13.
go back to reference Wu, W., Liu, J.X., Li, Z.H., Zhao, X.Y., Liu, G.Q., Liu, S.J., Ma, S.H., Li, W.M., Liu, W.M.: Surface-functionalized nano MOFs in oil for friction and wear reduction and antioxidation. Chem. Eng. J. 410, 128306 (2021)CrossRef Wu, W., Liu, J.X., Li, Z.H., Zhao, X.Y., Liu, G.Q., Liu, S.J., Ma, S.H., Li, W.M., Liu, W.M.: Surface-functionalized nano MOFs in oil for friction and wear reduction and antioxidation. Chem. Eng. J. 410, 128306 (2021)CrossRef
14.
go back to reference Gupta, S.A., Cochran, H.D., Cummings, P.T.: Shear behavior of squalane and tetracosane under extreme confinement. I. Model, simulation method, and interfacial slip. J. Chem. Phys. 107(23), 10316–10326 (1997)CrossRef Gupta, S.A., Cochran, H.D., Cummings, P.T.: Shear behavior of squalane and tetracosane under extreme confinement. I. Model, simulation method, and interfacial slip. J. Chem. Phys. 107(23), 10316–10326 (1997)CrossRef
15.
go back to reference Jabbarzadeh, A., Atkinson, J.D., Tanner, R.I.: Wall slip in the molecular dynamics simulation of thin films of hexadecane. J. Chem. Phys. 110, 2612–2620 (1999)CrossRef Jabbarzadeh, A., Atkinson, J.D., Tanner, R.I.: Wall slip in the molecular dynamics simulation of thin films of hexadecane. J. Chem. Phys. 110, 2612–2620 (1999)CrossRef
16.
go back to reference Ta, D.T., Tieu, A.K., Zhu, H.T., Kosasih, B.: Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: a crucial role of surface structure. J. Chem. Phys. 143(16), 164702 (2015)CrossRef Ta, D.T., Tieu, A.K., Zhu, H.T., Kosasih, B.: Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: a crucial role of surface structure. J. Chem. Phys. 143(16), 164702 (2015)CrossRef
17.
go back to reference Fillot, N., Berro, H., Vergne, P.: From continuous to molecular scale in modelling elastohydrodynamic lubrication nanoscale surface slip effects on film thickness and friction. Tribol. Lett. 43, 257–266 (2011)CrossRef Fillot, N., Berro, H., Vergne, P.: From continuous to molecular scale in modelling elastohydrodynamic lubrication nanoscale surface slip effects on film thickness and friction. Tribol. Lett. 43, 257–266 (2011)CrossRef
18.
go back to reference Habchi, W., Vergne, P., Eyheramendy, D., Morales-Espejel, G.E.: Numerical investigation of the use of machinery low-viscosity working fluids as lubricants in elastohydrodynamic lubricated point contacts. Proc. Inst. Mech. Eng. 225(6), 465–477 (2011)CrossRef Habchi, W., Vergne, P., Eyheramendy, D., Morales-Espejel, G.E.: Numerical investigation of the use of machinery low-viscosity working fluids as lubricants in elastohydrodynamic lubricated point contacts. Proc. Inst. Mech. Eng. 225(6), 465–477 (2011)CrossRef
19.
go back to reference Zhang, Y.G., Wang, W.Z., Liang, H., Zhao, Z.Q.: Layered oil slip model for investigation of film thickness behaviours at high speed conditions. Tribol. Int. 131, 137–147 (2019)CrossRef Zhang, Y.G., Wang, W.Z., Liang, H., Zhao, Z.Q.: Layered oil slip model for investigation of film thickness behaviours at high speed conditions. Tribol. Int. 131, 137–147 (2019)CrossRef
20.
go back to reference Heyes, D.M., Smith, E.R., Dini, D., Spikes, H.A., Zaki, T.A.: Pressure dependence of confined liquid behavior subjected to boundary-driven shear. J. Chem. Phys. 136(13), 134705 (2012)CrossRef Heyes, D.M., Smith, E.R., Dini, D., Spikes, H.A., Zaki, T.A.: Pressure dependence of confined liquid behavior subjected to boundary-driven shear. J. Chem. Phys. 136(13), 134705 (2012)CrossRef
21.
go back to reference Fernandes, C., Marques, P., Martins, R.C., Seabra, J.: Film thickness and traction curves of wind turbine gear oils. Tribol. Int. 86, 1–9 (2015)CrossRef Fernandes, C., Marques, P., Martins, R.C., Seabra, J.: Film thickness and traction curves of wind turbine gear oils. Tribol. Int. 86, 1–9 (2015)CrossRef
22.
go back to reference Ewen, J.P., Gattinoni, C., Zhang, J., Heyes, D.M., Spikes, H.A., Dini, D.: On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction. Phys. Chem. Chem. Phys. 19(27), 17883–17894 (2017)CrossRef Ewen, J.P., Gattinoni, C., Zhang, J., Heyes, D.M., Spikes, H.A., Dini, D.: On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction. Phys. Chem. Chem. Phys. 19(27), 17883–17894 (2017)CrossRef
23.
go back to reference Liu, H.C., Zhang, B.B., Bader, N., Venner, C.H., Poll, G.: Scale and contact geometry effects on friction in thermal EHL: twin-disc versus ball-on-disc. Tribol. Int. 154, 106694 (2021)CrossRef Liu, H.C., Zhang, B.B., Bader, N., Venner, C.H., Poll, G.: Scale and contact geometry effects on friction in thermal EHL: twin-disc versus ball-on-disc. Tribol. Int. 154, 106694 (2021)CrossRef
24.
go back to reference Lu, J., Wang, Q.J., Ren, N., Lockwood, F.E.: Correlation between pressure-viscosity coefficient and traction coefficient of the base stocks in traction lubricants: a molecular dynamic approach. Tribol. Int. 134, 328–334 (2019)CrossRef Lu, J., Wang, Q.J., Ren, N., Lockwood, F.E.: Correlation between pressure-viscosity coefficient and traction coefficient of the base stocks in traction lubricants: a molecular dynamic approach. Tribol. Int. 134, 328–334 (2019)CrossRef
25.
go back to reference Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M., Hagler, A.T.: Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins 4(1), 31–47 (1988)CrossRef Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M., Hagler, A.T.: Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins 4(1), 31–47 (1988)CrossRef
26.
go back to reference Shi, J.Q., Zhang, M., Liu, J.X., Liu, G.Q., Zhou, F.: Molecular dynamics simulations of adsorption behavior of organic friction modifiers on hydrophilic silica surfaces under the effects of surface coverage and contact pressure. Tribol. Int. 156, 106826 (2021)CrossRef Shi, J.Q., Zhang, M., Liu, J.X., Liu, G.Q., Zhou, F.: Molecular dynamics simulations of adsorption behavior of organic friction modifiers on hydrophilic silica surfaces under the effects of surface coverage and contact pressure. Tribol. Int. 156, 106826 (2021)CrossRef
27.
go back to reference Shi, J.Q., Zhou, Q., Sun, K., Liu, G.Q., Zhou, F.: Understanding adsorption behaviors of organic friction modifiers on hydroxylated sio2 (001) surfaces: effects of molecular polarity and temperature. Langmuir 36(29), 8543–8553 (2020)CrossRef Shi, J.Q., Zhou, Q., Sun, K., Liu, G.Q., Zhou, F.: Understanding adsorption behaviors of organic friction modifiers on hydroxylated sio2 (001) surfaces: effects of molecular polarity and temperature. Langmuir 36(29), 8543–8553 (2020)CrossRef
28.
go back to reference Huang, D., Zhang, T., Xiong, G., Xu, L., Qu, Z., Lee, E., Luo, T.: Tuning water slip behavior in nanochannels using self-assembled monolayers. ACS Appl. Mater. Interfaces 11(35), 32481–32488 (2019)CrossRef Huang, D., Zhang, T., Xiong, G., Xu, L., Qu, Z., Lee, E., Luo, T.: Tuning water slip behavior in nanochannels using self-assembled monolayers. ACS Appl. Mater. Interfaces 11(35), 32481–32488 (2019)CrossRef
29.
go back to reference Martini, A., Hsu, H.Y., Patankar, N.A., Lichter, S.: Slip at high shear rates. Phys. Rev. Lett. 100(20), 206001 (2008)CrossRef Martini, A., Hsu, H.Y., Patankar, N.A., Lichter, S.: Slip at high shear rates. Phys. Rev. Lett. 100(20), 206001 (2008)CrossRef
30.
go back to reference Dushanov, E., Kholmurodov, K., Yasuoka, K.: Molecular dynamics studies of the interaction between water and oxide surfaces. Phys. Part. Nucl. Lett. 9(6–7), 541–551 (2012)CrossRef Dushanov, E., Kholmurodov, K., Yasuoka, K.: Molecular dynamics studies of the interaction between water and oxide surfaces. Phys. Part. Nucl. Lett. 9(6–7), 541–551 (2012)CrossRef
31.
go back to reference Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRef Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRef
32.
go back to reference Evans, D.J., Lee, H.B.: The Nose–Hoover thermostat. J. Chem. Phys. 83(8), 4069–4074 (1985)CrossRef Evans, D.J., Lee, H.B.: The Nose–Hoover thermostat. J. Chem. Phys. 83(8), 4069–4074 (1985)CrossRef
33.
go back to reference Hata, H., Tsubouchi, T.: Molecular structures of traction fluids in relation to traction properties. Tribol. Lett. 5, 69–74 (1998)CrossRef Hata, H., Tsubouchi, T.: Molecular structures of traction fluids in relation to traction properties. Tribol. Lett. 5, 69–74 (1998)CrossRef
34.
go back to reference Porras-Vazquez, A., Martinie, L., Vergne, P., Fillot, N.: Independence between friction and velocity distribution in fluids subjected to severe shearing and confinement. Phys. Chem. Chem. Phys. 20(43), 27280–27293 (2018)CrossRef Porras-Vazquez, A., Martinie, L., Vergne, P., Fillot, N.: Independence between friction and velocity distribution in fluids subjected to severe shearing and confinement. Phys. Chem. Chem. Phys. 20(43), 27280–27293 (2018)CrossRef
35.
go back to reference Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)CrossRef Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)CrossRef
36.
go back to reference Ewen, J.P., Kannam, S.K., Todd, B.D., Dini, D.: Slip of alkanes confined between surfactant monolayers adsorbed on solid surfaces. Langmuir 34(13), 3864–3873 (2018)CrossRef Ewen, J.P., Kannam, S.K., Todd, B.D., Dini, D.: Slip of alkanes confined between surfactant monolayers adsorbed on solid surfaces. Langmuir 34(13), 3864–3873 (2018)CrossRef
37.
go back to reference Klein, J., Kumacheva, E.: Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions. J. Chem. Phys. 108(16), 6996–7009 (1998)CrossRef Klein, J., Kumacheva, E.: Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions. J. Chem. Phys. 108(16), 6996–7009 (1998)CrossRef
38.
go back to reference Gao, H., Müser, M.H.: Why liquids can appear to solidify during squeeze-out–Even when they don’t. J. Colloid Interface Sci. 562, 273–278 (2020)CrossRef Gao, H., Müser, M.H.: Why liquids can appear to solidify during squeeze-out–Even when they don’t. J. Colloid Interface Sci. 562, 273–278 (2020)CrossRef
39.
go back to reference Wang, S., Javadpour, F., Feng, Q.: Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel 171, 74–86 (2016)CrossRef Wang, S., Javadpour, F., Feng, Q.: Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel 171, 74–86 (2016)CrossRef
40.
go back to reference Omori, T., et al.: Full characterization of the hydrodynamic boundary condition at the atomic. Phys. Rev. Fluids 4, 114201 (2019)CrossRef Omori, T., et al.: Full characterization of the hydrodynamic boundary condition at the atomic. Phys. Rev. Fluids 4, 114201 (2019)CrossRef
41.
go back to reference Maćkowiak, S.Z., Heyes, D.M., Dini, D., Brańka, A.C.: Non-equilibrium phase behavior and friction of confined molecular film under shear: a nonequilibrium molecular dynamics study. J. Chem. Phys. 145, 164704 (2016)CrossRef Maćkowiak, S.Z., Heyes, D.M., Dini, D., Brańka, A.C.: Non-equilibrium phase behavior and friction of confined molecular film under shear: a nonequilibrium molecular dynamics study. J. Chem. Phys. 145, 164704 (2016)CrossRef
42.
go back to reference Echeverri, R.S., Marcel, C.P., Ewen, J.P.: Behaviour of n-alkanes confined between iron oxide surfaces at high pressure and shear rate: a nonequilibrium molecular dynamics study. Tribol. Int. 137, 420–432 (2019)CrossRef Echeverri, R.S., Marcel, C.P., Ewen, J.P.: Behaviour of n-alkanes confined between iron oxide surfaces at high pressure and shear rate: a nonequilibrium molecular dynamics study. Tribol. Int. 137, 420–432 (2019)CrossRef
43.
go back to reference Yong, X., Zhang, L.T.: Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. J. Chem. Phys. 138(8), 084503 (2013)CrossRef Yong, X., Zhang, L.T.: Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. J. Chem. Phys. 138(8), 084503 (2013)CrossRef
44.
go back to reference Bernardi, S., Todd, B., Searles, D.J.: Thermostating highly confined fluids. J. Chem. Phys. 132(24), 244706 (2010)CrossRef Bernardi, S., Todd, B., Searles, D.J.: Thermostating highly confined fluids. J. Chem. Phys. 132(24), 244706 (2010)CrossRef
45.
go back to reference Khare, R., Pablo, J.D., Yethiraj, A.: Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar couette flows. J. Chem. Phys. 107(7), 2589–2596 (1997)CrossRef Khare, R., Pablo, J.D., Yethiraj, A.: Molecular simulation and continuum mechanics study of simple fluids in non-isothermal planar couette flows. J. Chem. Phys. 107(7), 2589–2596 (1997)CrossRef
46.
go back to reference Sharif, K.J., Evans, H.P., Snidle, R.W., Newall, J.P.: Modeling of film thickness and traction in a variable ratio traction drive rig. Trans. ASME 126, 92–104 (2004)CrossRef Sharif, K.J., Evans, H.P., Snidle, R.W., Newall, J.P.: Modeling of film thickness and traction in a variable ratio traction drive rig. Trans. ASME 126, 92–104 (2004)CrossRef
47.
go back to reference Koshun, O., Haruki, O., Hiroki, K., Yasutaka, Y., Takeshi, O., Samy, M., Laurent, J.: Large effect of lateral box size in molecular dynamics simulations of liquid-solid friction. Phys. Rev. E 100(023101), 1–8 (2019) Koshun, O., Haruki, O., Hiroki, K., Yasutaka, Y., Takeshi, O., Samy, M., Laurent, J.: Large effect of lateral box size in molecular dynamics simulations of liquid-solid friction. Phys. Rev. E 100(023101), 1–8 (2019)
48.
go back to reference Itagaki, H., Ohama, K., Rajan, A.N.R.: Method for estimating traction curves under practical operating conditions. Tribol. Int. 149, 105639 (2020)CrossRef Itagaki, H., Ohama, K., Rajan, A.N.R.: Method for estimating traction curves under practical operating conditions. Tribol. Int. 149, 105639 (2020)CrossRef
49.
go back to reference Gao, J., Luedtke, W., Landman, U.: Structures, solvation forces and shear of molecular films in a rough nano-confinement. Tribol. Lett. 9(1), 3–13 (2000)CrossRef Gao, J., Luedtke, W., Landman, U.: Structures, solvation forces and shear of molecular films in a rough nano-confinement. Tribol. Lett. 9(1), 3–13 (2000)CrossRef
50.
go back to reference Ree, T., Eyring, H.: Theory of non-newtonian flow. I. Solid plastic system. J. Chem. Phys. 26(7), 793–800 (1955) Ree, T., Eyring, H.: Theory of non-newtonian flow. I. Solid plastic system. J. Chem. Phys. 26(7), 793–800 (1955)
Metadata
Title
Effect of Film Thickness on Slip and Traction Performances in Elastohydrodynamic Lubrication by a Molecular Dynamics Simulation
Authors
Junqin Shi
Junyi Wang
Xiaobin Yi
Xiaoli Fan
Publication date
01-12-2021
Publisher
Springer US
Published in
Tribology Letters / Issue 4/2021
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-021-01516-9

Other articles of this Issue 4/2021

Tribology Letters 4/2021 Go to the issue

Premium Partners