Skip to main content
Top

2023 | OriginalPaper | Chapter

Effect of Graphene Content on the Mechanical Properties of PMMA Composites

Author : Sun Guanhong

Published in: Proceedings of China SAE Congress 2021: Selected Papers

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of graphene reinforcement on tensile strength, elastic modulus and fracture toughness of the graphene-PMMA composites was investigated. Graphene-PMMA composites were prepared with 0.5, 1, and 3 wt% graphene incorporated. It was found that the graphene flakes were self-oriented to the horizontal direction. The untreated graphene was found has little effect on the tensile strength of the composites, but the fracture toughness was improved by 40–50% with 0.5–1% graphene incorporated. Examination of the fracture surfaces of the samples after tearing tests found that the graphene made the cracks deflection and branching happen during crack propagation, which increased the energy consumed for fracture of the composites. Tensile tests with single edge notched samples were also performed, the observation at the notch tip found the plastic deformation zone formation around the notch tip on the samples with graphene incorporated, while the pure PMMA samples all had brittle fracture.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ferrari, A.C., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)CrossRef Ferrari, A.C., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)CrossRef
2.
go back to reference Lee, C., Wei, X.D., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef Lee, C., Wei, X.D., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef
3.
go back to reference Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef
4.
go back to reference Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
6.
go back to reference Yang, Z.X., Bhowmick, S., Sen, F.G., Banerji, A., Alpas, A.T.: Roles of sliding-induced defects and dissociated water molecules on low friction of graphene. Sci. Rep. 8, 1–13 (2018) Yang, Z.X., Bhowmick, S., Sen, F.G., Banerji, A., Alpas, A.T.: Roles of sliding-induced defects and dissociated water molecules on low friction of graphene. Sci. Rep. 8, 1–13 (2018)
7.
go back to reference Liu, M.C., Chen, C.L., Hu, J., Wu, X.L., Wang, X.K.: Synthesis of magnetite/graphene oxide composite and application for cobalt(ii) removal. J Phys. Chem. C 115, 25234–25240 (2011)CrossRef Liu, M.C., Chen, C.L., Hu, J., Wu, X.L., Wang, X.K.: Synthesis of magnetite/graphene oxide composite and application for cobalt(ii) removal. J Phys. Chem. C 115, 25234–25240 (2011)CrossRef
8.
go back to reference Wang, K., Wang, Y.F., Fan, Z.J., Yan, J., Wei, T.: Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull. 46, 315–318 (2011)CrossRef Wang, K., Wang, Y.F., Fan, Z.J., Yan, J., Wei, T.: Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull. 46, 315–318 (2011)CrossRef
9.
go back to reference Kuilla, T., Bhadra, S., Yao, D.H., Kim, N.H., Bose, S., Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350–1375 (2010)CrossRef Kuilla, T., Bhadra, S., Yao, D.H., Kim, N.H., Bose, S., Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350–1375 (2010)CrossRef
10.
go back to reference Huang, J.C.: Carbon black filled conducting polymers and polymer blends. Adv. Polym. Tech. 21, 299–313 (2002)CrossRef Huang, J.C.: Carbon black filled conducting polymers and polymer blends. Adv. Polym. Tech. 21, 299–313 (2002)CrossRef
11.
go back to reference Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)CrossRef Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)CrossRef
12.
go back to reference Fang, M., Wang, K.G., Lu, H.B., Yang, Y.L., Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19, 7098–7105 (2009)CrossRef Fang, M., Wang, K.G., Lu, H.B., Yang, Y.L., Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19, 7098–7105 (2009)CrossRef
13.
go back to reference Higginbotham, A.L., Lomeda, J.R., Morgan, A.B., Tour, J.M.: Graphite Oxide Flame-Retardant Polymer Nanocomposites. Acs Appl. Mater. Inter. 1, 2256–2261 (2009)CrossRef Higginbotham, A.L., Lomeda, J.R., Morgan, A.B., Tour, J.M.: Graphite Oxide Flame-Retardant Polymer Nanocomposites. Acs Appl. Mater. Inter. 1, 2256–2261 (2009)CrossRef
14.
go back to reference Das, B., Prasad, K.E., Ramamurty, U., Rao, C.N.R.: Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20, 125705 (2009)CrossRef Das, B., Prasad, K.E., Ramamurty, U., Rao, C.N.R.: Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20, 125705 (2009)CrossRef
15.
go back to reference Ramanathan, T., et al.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–331 (2008)CrossRef Ramanathan, T., et al.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–331 (2008)CrossRef
16.
go back to reference Valles, C., Abdelkader, A.M., Young, R.J., Kinloch, I.A.: Few layer graphene-polypropylene nanocomposites: the role of flake diameter. Faraday Discuss. 173, 379–390 (2014)CrossRef Valles, C., Abdelkader, A.M., Young, R.J., Kinloch, I.A.: Few layer graphene-polypropylene nanocomposites: the role of flake diameter. Faraday Discuss. 173, 379–390 (2014)CrossRef
17.
go back to reference Valles, C., et al.: PMMA-grafted graphene nanoplatelets to reinforce the mechanical and thermal properties of PMMA composites. Carbon 157, 750–760 (2020)CrossRef Valles, C., et al.: PMMA-grafted graphene nanoplatelets to reinforce the mechanical and thermal properties of PMMA composites. Carbon 157, 750–760 (2020)CrossRef
18.
go back to reference Walker, L.S., Marotto, V.R., Rafiee, M.A., Koratkar, N., Corral, E.L.: Toughening in graphene ceramic composites. ACS Nano 5, 3182–3190 (2011)CrossRef Walker, L.S., Marotto, V.R., Rafiee, M.A., Koratkar, N., Corral, E.L.: Toughening in graphene ceramic composites. ACS Nano 5, 3182–3190 (2011)CrossRef
19.
go back to reference Kvetkova, L., Duszova, A., Hvizdos, P., Dusza, J., Kun, P., Balazsi, C.: Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Mater. 66, 793–796 (2012)CrossRef Kvetkova, L., Duszova, A., Hvizdos, P., Dusza, J., Kun, P., Balazsi, C.: Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Mater. 66, 793–796 (2012)CrossRef
20.
go back to reference Chandrasekaran, S., Sato, N., Tolle, F., Mulhaupt, R., Fiedler, B., Schulte, K.: Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97, 90–99 (2014)CrossRef Chandrasekaran, S., Sato, N., Tolle, F., Mulhaupt, R., Fiedler, B., Schulte, K.: Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97, 90–99 (2014)CrossRef
21.
go back to reference Jung, S.Y., Paik, K.W.: Effects of alignment of graphene flakes on water permeability of graphene-epoxy composite film. In: Elec Comp C, pp. 2255–2259 (2014) Jung, S.Y., Paik, K.W.: Effects of alignment of graphene flakes on water permeability of graphene-epoxy composite film. In: Elec Comp C, pp. 2255–2259 (2014)
22.
go back to reference Zhang, L., et al.: Functionalized graphene as an effective antioxidant in natural rubber. Compos. Part a-Appl. S. 107, 47–54 (2018)CrossRef Zhang, L., et al.: Functionalized graphene as an effective antioxidant in natural rubber. Compos. Part a-Appl. S. 107, 47–54 (2018)CrossRef
23.
go back to reference Denis, P.A., Iribarne, F.: Comparative study of defect reactivity in graphene. J. Phys. Chem. C 117, 19048–19055 (2013)CrossRef Denis, P.A., Iribarne, F.: Comparative study of defect reactivity in graphene. J. Phys. Chem. C 117, 19048–19055 (2013)CrossRef
24.
go back to reference Zhang, H.B., Zheng, W.G., Yan, Q., Jiang, Z.G., Yu, Z.Z.: The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50, 5117–5125 (2012)CrossRef Zhang, H.B., Zheng, W.G., Yan, Q., Jiang, Z.G., Yu, Z.Z.: The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50, 5117–5125 (2012)CrossRef
25.
go back to reference Fang, M., Wang, K.G., Lu, H.B., Yang, Y.L., Nutt, S.: Single-layer graphene nanosheets with controlled grafting of polymer chains. J. Mater. Chem. 20, 1982–1992 (2010)CrossRef Fang, M., Wang, K.G., Lu, H.B., Yang, Y.L., Nutt, S.: Single-layer graphene nanosheets with controlled grafting of polymer chains. J. Mater. Chem. 20, 1982–1992 (2010)CrossRef
26.
go back to reference Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)CrossRef Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)CrossRef
27.
go back to reference Stankovich, S., et al.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef Stankovich, S., et al.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRef
28.
go back to reference Aliheidari, N., Tripuraneni, R., Ameli, A., Nadimpalli, S.: Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polym Test 60, 94–101 (2017)CrossRef Aliheidari, N., Tripuraneni, R., Ameli, A., Nadimpalli, S.: Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polym Test 60, 94–101 (2017)CrossRef
Metadata
Title
Effect of Graphene Content on the Mechanical Properties of PMMA Composites
Author
Sun Guanhong
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-3842-9_74

Premium Partner