Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2022

08-04-2022 | Technical Article

Effect of Heating Rate on Martensite to Austenite Transformation Kinetics in Supermartensitic Stainless Steel Weld Deposit

Authors: Sebastián Zappa, John J. Hoyos, Leonardo N. Tufaro, Hernán G. Svoboda

Published in: Journal of Materials Engineering and Performance | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The supermartensitic stainless steels (SMSS) have a better combination of weldability, toughness and corrosion resistance than conventional martensitic and duplex stainless steels. Nevertheless, for both base material and weld deposit, heat treatments (inter-and sub-critical tempering) are required to control the resultant microstructure. A tempered martensite microstructure with a high content of reformed austenite, obtained after a post-weld heat treatment, improves the properties of SMSS weld deposits. The comprehension of austenite formation during post-weld heat treatment in weld metal deposits is a key aspect to predict the final properties. In the present work, the transformation kinetics of martensite into austenite in SMSS all-weld metal deposit was studied by dilatometry, considering the effect of the heating rate (1, 10 and 100 °C/s). In addition, the austenitic transformation kinetic was modeled by a sigmoidal equation. The increase of the heating rate increases Ac1 and Ac3 and reduces the range of the transformation (Ac3–Ac1) from 120 to 80 °C. The maximum transformation rate reached values of 0.023, 0.018 and 0.019 1/°C for 1, 10 and 100 °C/s, respectively. Thus, the maximum transformation rate was reached for the slowest heating rate. Nevertheless, the average transformation rate increased as a function of the heating rate. This could be associated with a change in the transformation mechanism.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Lippold and B.T. Alexandrov, Phase Transformation During Welding and Postweld Heat Treatment of 12Cr-6,5Ni-2,5Mo Supermartensitic Stainless Steel, Stainless Steel Word, 2004, 2004, p 1–10. (in English) C. Lippold and B.T. Alexandrov, Phase Transformation During Welding and Postweld Heat Treatment of 12Cr-6,5Ni-2,5Mo Supermartensitic Stainless Steel, Stainless Steel Word, 2004, 2004, p 1–10. (in English)
2.
go back to reference S. Zappa, E. Surian and H. Svoboda, Effects of Welding Procedure on Corrosion Resistance and Hydrogen Embrittlement of Supermartensitic Stainless Steel Deposits, J. Iron Steel Res. Int., 2013, 20(12), p 124–132. (in English)CrossRef S. Zappa, E. Surian and H. Svoboda, Effects of Welding Procedure on Corrosion Resistance and Hydrogen Embrittlement of Supermartensitic Stainless Steel Deposits, J. Iron Steel Res. Int., 2013, 20(12), p 124–132. (in English)CrossRef
3.
go back to reference D. Zou, Y. Han, W. Zhang and X. Fang, Influence of Tempering Process on Mechanical Properties of 00Cr13Ni4Mo Supermartensitic Stainless Steel, J. Iron Steel Res. Int., 2010, 17(8), p 50–54. (in English)CrossRef D. Zou, Y. Han, W. Zhang and X. Fang, Influence of Tempering Process on Mechanical Properties of 00Cr13Ni4Mo Supermartensitic Stainless Steel, J. Iron Steel Res. Int., 2010, 17(8), p 50–54. (in English)CrossRef
4.
go back to reference D. Zou, Y. Han, D. Yan, D. Wang, W. Zhang and G. Fan, Hot Workability of 00Cr13Ni5Mo2 Supermartensitic Stainless Steel, Mater. Des., 2011, 32, p 4443–4448. (in English)CrossRef D. Zou, Y. Han, D. Yan, D. Wang, W. Zhang and G. Fan, Hot Workability of 00Cr13Ni5Mo2 Supermartensitic Stainless Steel, Mater. Des., 2011, 32, p 4443–4448. (in English)CrossRef
5.
go back to reference P. Bala Srinivasan, S.W. Sharkawy and W. Dietzel, Environmental Cracking Behavior of Submerged Arc-Welded Supermartensitic Stainless Steel Weldments, J. Mater. Eng. Perform., 2004, 13(2), p 232–236. (in English)CrossRef P. Bala Srinivasan, S.W. Sharkawy and W. Dietzel, Environmental Cracking Behavior of Submerged Arc-Welded Supermartensitic Stainless Steel Weldments, J. Mater. Eng. Perform., 2004, 13(2), p 232–236. (in English)CrossRef
6.
go back to reference G. Pieta, R. Leite, C. Kwietniewski, T. Clarke and T. Strohaecker, Evaluation of the Fracture Toughness of a SMSS Subjected to Common Heat Treatment Cycles in an Aggressive Environment, J. Mater. Eng. Perform., 2010, 19(9), p 1318–1324. (in English)CrossRef G. Pieta, R. Leite, C. Kwietniewski, T. Clarke and T. Strohaecker, Evaluation of the Fracture Toughness of a SMSS Subjected to Common Heat Treatment Cycles in an Aggressive Environment, J. Mater. Eng. Perform., 2010, 19(9), p 1318–1324. (in English)CrossRef
7.
go back to reference S. Godin, J. Hamel-Akré, D. Thibault, A. Serventi and P. Bocher, Ni and Mn Enrichment Effects on Reformed Austenite Thermodynamical and Low Cycle Fatigue Stability of 13%Cr-4%Ni and 13%Cr-6%Ni Stainless Steels, 2020 Springer, SN Appl. Sci., 2020, 2, p. 382 (in English) CrossRef S. Godin, J. Hamel-Akré, D. Thibault, A. Serventi and P. Bocher, Ni and Mn Enrichment Effects on Reformed Austenite Thermodynamical and Low Cycle Fatigue Stability of 13%Cr-4%Ni and 13%Cr-6%Ni Stainless Steels, 2020 Springer, SN Appl. Sci., 2020, 2, p. 382 (in English) CrossRef
8.
go back to reference D. Zou, X. Liu, Y. Han, W. Zhang, J. Li and K. Wu, Influence of Heat Treatment Temperature on Microstructure and Property of 00 Cr 13 Ni 5 Mo 2 Supermartensitic Stainless Steel, J. Iron Steel Res. Int., 2014, 21(3), p 364–368. (in English)CrossRef D. Zou, X. Liu, Y. Han, W. Zhang, J. Li and K. Wu, Influence of Heat Treatment Temperature on Microstructure and Property of 00 Cr 13 Ni 5 Mo 2 Supermartensitic Stainless Steel, J. Iron Steel Res. Int., 2014, 21(3), p 364–368. (in English)CrossRef
9.
go back to reference F. Niessen, F. B. Grumsen, J. Hald and M. A. J. Somers, Formation and Stabilization of Reversed Austenite in Supermartensitic Stainless Steel. 24th International Federation for Heat Treatment and Surface Engineering Congress, Nice, France, 2017 (in English) F. Niessen, F. B. Grumsen, J. Hald and M. A. J. Somers, Formation and Stabilization of Reversed Austenite in Supermartensitic Stainless Steel. 24th International Federation for Heat Treatment and Surface Engineering Congress, Nice, France, 2017 (in English)
10.
go back to reference A. Bojack, L. Zhao, P.F. Morris and J. Sietsma, In-Situ Determination of Austenite and Martensite Formation in 13Cr6Ni2Mo Supermartensitic Stainless Steel, Mater. Charact., 2012, 71(5), p 77–86. (in English)CrossRef A. Bojack, L. Zhao, P.F. Morris and J. Sietsma, In-Situ Determination of Austenite and Martensite Formation in 13Cr6Ni2Mo Supermartensitic Stainless Steel, Mater. Charact., 2012, 71(5), p 77–86. (in English)CrossRef
11.
go back to reference L. Yu-rong, Y. Dong, Y. Qi-long, S. Ji, Z. Kun-yu and J. Wen, Effect of Heat Treatment on Microstructure and Property of Cr13 Super Martensitic Stainless Steel, J. Iron Steel Res. Int., 2011, 18(11), p 60–66. (in English)CrossRef L. Yu-rong, Y. Dong, Y. Qi-long, S. Ji, Z. Kun-yu and J. Wen, Effect of Heat Treatment on Microstructure and Property of Cr13 Super Martensitic Stainless Steel, J. Iron Steel Res. Int., 2011, 18(11), p 60–66. (in English)CrossRef
12.
go back to reference A. Bojack, L. Zhao, P.F. Morris and J. Sietsma, Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel, Metall. Mater. Trans. A, 2016, 47, p 1996–2009. (in English)CrossRef A. Bojack, L. Zhao, P.F. Morris and J. Sietsma, Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel, Metall. Mater. Trans. A, 2016, 47, p 1996–2009. (in English)CrossRef
13.
go back to reference F. Niessen, M. Villa, J. Hald and M.A.J. Somers, Kinetics Analysis of Two-Stage Austenitization in Supermartensitic Stainless Steel, Mater. Des. (18), 2017, 116, p 8–15. (in English)CrossRef F. Niessen, M. Villa, J. Hald and M.A.J. Somers, Kinetics Analysis of Two-Stage Austenitization in Supermartensitic Stainless Steel, Mater. Des. (18), 2017, 116, p 8–15. (in English)CrossRef
14.
go back to reference S. Zappa, H. Svoboda, M. Ramini, E. Surian and L. de Vedia, Improving Supermartensitic Stainless Steel Weld Metal Toughness, Weld. J., 2012, 91, p 83s–90s. (in English) S. Zappa, H. Svoboda, M. Ramini, E. Surian and L. de Vedia, Improving Supermartensitic Stainless Steel Weld Metal Toughness, Weld. J., 2012, 91, p 83s–90s. (in English)
15.
go back to reference F. Niessen, N. Tiedje and J. Hald, Kinetics Modeling of Delta-Ferrite Formation and Retainment During Casting of Supermartensitic Stainless Steel, Mater. Des., 2017, 118(15), p 138–145. (in English)CrossRef F. Niessen, N. Tiedje and J. Hald, Kinetics Modeling of Delta-Ferrite Formation and Retainment During Casting of Supermartensitic Stainless Steel, Mater. Des., 2017, 118(15), p 138–145. (in English)CrossRef
16.
go back to reference S. Zappa, H. Svoboda and E. Surian, Effect of Post-Weld Heat Treatment on the Mechanical Properties of Supermartensitic Stainless Steel Deposit, J. Mater. Eng. Perform., 2017, 26(2), p 514–521. (in English)CrossRef S. Zappa, H. Svoboda and E. Surian, Effect of Post-Weld Heat Treatment on the Mechanical Properties of Supermartensitic Stainless Steel Deposit, J. Mater. Eng. Perform., 2017, 26(2), p 514–521. (in English)CrossRef
17.
go back to reference B. Rohit, and N.R. Muktinutalapati, Austenite Reversion in 18% Ni Maraging Steel and Its Weldments, Mater. Sci. Technol., 2018, 34(3), p 253–260 (in English). CrossRef B. Rohit, and N.R. Muktinutalapati, Austenite Reversion in 18% Ni Maraging Steel and Its Weldments, Mater. Sci. Technol., 2018, 34(3), p 253–260 (in English). CrossRef
18.
go back to reference K. Hao, M. Gao, C. Zhang, R. Wu and X. Zeng, Achieving Continuous Cold Rolling of Martensitic Stainless Steel Via Online Induction Heat Treatment, Mater. Sci. Eng. A, 2016, 739(2), p 1996–2009. (in English) K. Hao, M. Gao, C. Zhang, R. Wu and X. Zeng, Achieving Continuous Cold Rolling of Martensitic Stainless Steel Via Online Induction Heat Treatment, Mater. Sci. Eng. A, 2016, 739(2), p 1996–2009. (in English)
19.
go back to reference P. Krakhmalev, I. Yadroitsava, G. Fredriksson and I. Yadroitsev, In Situ Heat Treatment in Selective Laser Melted Martensitic AISI 420 Stainless Steels, Mater. Des., 2015, 87(15), p 380–385. (in English)CrossRef P. Krakhmalev, I. Yadroitsava, G. Fredriksson and I. Yadroitsev, In Situ Heat Treatment in Selective Laser Melted Martensitic AISI 420 Stainless Steels, Mater. Des., 2015, 87(15), p 380–385. (in English)CrossRef
20.
go back to reference “Specification for Stainless Steel Electrodes for Flux Cored Arc Welding and Stainless Steel Flux Cored Rods for Gas Tungsten Arc Welding”, A5.22, AWS Standards, AWS, 1995 “Specification for Stainless Steel Electrodes for Flux Cored Arc Welding and Stainless Steel Flux Cored Rods for Gas Tungsten Arc Welding”, A5.22, AWS Standards, AWS, 1995
21.
go back to reference “Technical sheet ok tubrod 15-55”, ESAB, 2004 “Technical sheet ok tubrod 15-55”, ESAB, 2004
22.
go back to reference B.D. Cullity, and S.R. Stock, Elements of X Ray Diffraction, Prentice-Hall, 3rd Edition, 2001, p 351–354 B.D. Cullity, and S.R. Stock, Elements of X Ray Diffraction, Prentice-Hall, 3rd Edition, 2001, p 351–354
23.
go back to reference “Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count”, E562, ASTM Standards, ASTM, 2002 “Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count”, E562, ASTM Standards, ASTM, 2002
24.
go back to reference D.S. Leem, Y.D. Lee, J.H. Jun and C.S. Choi, Amount of Retained Austenite at Room Temperature After Reverse Transformation of Martensite to Austenite in an Fe-13%Cr-7%Ni-3%Si Martensitic Stainless Steel, Scr. Mater., 2001, 45, p 767–772. (in English)CrossRef D.S. Leem, Y.D. Lee, J.H. Jun and C.S. Choi, Amount of Retained Austenite at Room Temperature After Reverse Transformation of Martensite to Austenite in an Fe-13%Cr-7%Ni-3%Si Martensitic Stainless Steel, Scr. Mater., 2001, 45, p 767–772. (in English)CrossRef
25.
go back to reference Y. Lian, J. Huang, J. Zhang, C. Zhang, W. Gao and C. Zhao, Effect of 0.2 and 0.5% Ti on the Microstructure and Mechanical Properties of 13Cr Supermartensitic Stainless Steel, J. Mater. Eng. Perform., 2015, 24(11), p 4253–4259. (in English)CrossRef Y. Lian, J. Huang, J. Zhang, C. Zhang, W. Gao and C. Zhao, Effect of 0.2 and 0.5% Ti on the Microstructure and Mechanical Properties of 13Cr Supermartensitic Stainless Steel, J. Mater. Eng. Perform., 2015, 24(11), p 4253–4259. (in English)CrossRef
26.
go back to reference F. Nießen, M. Villa, D. Apel, O. Keßler, M. Reich, J. Hald and M.A.J. Somers, In Situ Techniques for the Investigation of the Kinetics of Austenitization of Supermartensitic Stainless Steel, Mater. Sci. Forum, 2017, 879, p 1381–1386. (in English)CrossRef F. Nießen, M. Villa, D. Apel, O. Keßler, M. Reich, J. Hald and M.A.J. Somers, In Situ Techniques for the Investigation of the Kinetics of Austenitization of Supermartensitic Stainless Steel, Mater. Sci. Forum, 2017, 879, p 1381–1386. (in English)CrossRef
27.
go back to reference H. Kooiker, E.S. Perdahcıoğlu and A.H. van den Boogaard, Combined Athermal and Isothermal Martensite to Austenite Reversion Kinetics, Experiment and Modelling, Mater. Des., 2020, 196, p 1–7. (in English)CrossRef H. Kooiker, E.S. Perdahcıoğlu and A.H. van den Boogaard, Combined Athermal and Isothermal Martensite to Austenite Reversion Kinetics, Experiment and Modelling, Mater. Des., 2020, 196, p 1–7. (in English)CrossRef
28.
go back to reference M. Gómez, S.F. Medina and G. Caruana, Modelling of Phase Transformation Kinetics by Correction of Dilatometry Results for a Ferritic Nb-microalloyed Steel, ISIJ Int., 2003, 43(8), p 1228–1237. (in English)CrossRef M. Gómez, S.F. Medina and G. Caruana, Modelling of Phase Transformation Kinetics by Correction of Dilatometry Results for a Ferritic Nb-microalloyed Steel, ISIJ Int., 2003, 43(8), p 1228–1237. (in English)CrossRef
29.
go back to reference N. Zotov, V. Marzynkevitsch and E.J. Mittemeijer, Evaluation of Kinetic Equations Describing the Martensite-Austenite Phase Transformation in NiTi Shape Memory Alloys, J. Alloy. Compd., 2014, 616, p 385–393. (in English)CrossRef N. Zotov, V. Marzynkevitsch and E.J. Mittemeijer, Evaluation of Kinetic Equations Describing the Martensite-Austenite Phase Transformation in NiTi Shape Memory Alloys, J. Alloy. Compd., 2014, 616, p 385–393. (in English)CrossRef
30.
go back to reference T.G. Gooch, P. Woollin and A.G. Haynes, Welding Metallurgy of Low Carbon 13% Chromium Martensitic Steel, Supermartensitic Stainless Steel, 1999, 99, p 188–195. (in English) T.G. Gooch, P. Woollin and A.G. Haynes, Welding Metallurgy of Low Carbon 13% Chromium Martensitic Steel, Supermartensitic Stainless Steel, 1999, 99, p 188–195. (in English)
31.
go back to reference W. Wu, L.Y. Hwu, D.Y. Lin and J.L. Lee, The Relationship Between Alloying Elements and Retained Austenite in Martensitic Stainless Steels Welds, Scr. Mater., 2000, 42, p 1071–1076. (in English)CrossRef W. Wu, L.Y. Hwu, D.Y. Lin and J.L. Lee, The Relationship Between Alloying Elements and Retained Austenite in Martensitic Stainless Steels Welds, Scr. Mater., 2000, 42, p 1071–1076. (in English)CrossRef
Metadata
Title
Effect of Heating Rate on Martensite to Austenite Transformation Kinetics in Supermartensitic Stainless Steel Weld Deposit
Authors
Sebastián Zappa
John J. Hoyos
Leonardo N. Tufaro
Hernán G. Svoboda
Publication date
08-04-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06866-6

Other articles of this Issue 10/2022

Journal of Materials Engineering and Performance 10/2022 Go to the issue

Premium Partners