Skip to main content
Top
Published in: Physics of Metals and Metallography 8/2021

01-08-2021 | STRENGTH AND PLASTICITY

Effect of High-Temperature Rolling and Annealing on the Structure and Properties of a Zirconium Based Amorphous Alloy

Authors: A. G. Firsova, N. Yu. Tabachkova, A. I. Bazlov

Published in: Physics of Metals and Metallography | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Metallic zirconium based glasses are a new promising family of materials characterized by high strength and comparatively high plasticity in compression tests. In recent years, great attention has been paid to the application of different regimes for the treatment of metallic glasses for the formation of a unhomogeneous amorphous structure to increase the plasticity of these materials. In this study, amorphous Zr62.5Cu22.5Fe5Al10 alloy bands were manufactured by the method of quenching on a rotary copper disk. The effect of hot rolling and further annealing at a temperature of 300°C for 150 min on the structure and properties of these bands was investigated. To study the transformation occurring in their structure as a result of thermomechanical treatment, transmission electron microscopy and X-ray diffraction were used. The effect of thermomechanical treatment on the mechanical properties of bands was studied by measuring the Vickers microhardness. Based on the obtained results, some conclusions about the effect produced by the microstructure of bands on the microhardness of the Zr62.5Cu22.5Fe5Al10 alloy were made. In this study, an abrupt increase in the microhardness was observed after thermomechanical treatment, due to the formation of nanosized uniformly distributed areas in the structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. V. Louzguine-Luzgin, M. Yu. Zadorozhnyy, S. V. Ketov, J. Jiang, I. S. Golovin, and A. S. Aronin, “Influence of cyclic loading on the structure and double-stage structure relaxation behavior of a Zr–Cu–Fe–Al metallic glass,” Mater. Sci. Eng., A. 742, 526–531 (2019).CrossRef D. V. Louzguine-Luzgin, M. Yu. Zadorozhnyy, S. V. Ketov, J. Jiang, I. S. Golovin, and A. S. Aronin, “Influence of cyclic loading on the structure and double-stage structure relaxation behavior of a Zr–Cu–Fe–Al metallic glass,” Mater. Sci. Eng., A. 742, 526–531 (2019).CrossRef
2.
go back to reference A. Yu. Churyumov, A. I. Bazlov, A. A. Tsar’kov, K. F. Starodub, and D. V. Louzguine-Luzgin, “Investigation and simulation of crystallization of bulk zirconium-based metallic glasses,” Russ. J. Nonferrous Met. 55, 31–36 (2014).CrossRef A. Yu. Churyumov, A. I. Bazlov, A. A. Tsar’kov, K. F. Starodub, and D. V. Louzguine-Luzgin, “Investigation and simulation of crystallization of bulk zirconium-based metallic glasses,” Russ. J. Nonferrous Met. 55, 31–36 (2014).CrossRef
3.
go back to reference A. Yu. Churyumov, A. I. Bazlov, A. N. Solonin, V. Yu. Zadorozhnyi, G. Q. Xie, S. Li, and D. V. Louzguine-Luzgin, “Structure and mechanical properties of Ni–Cu–Ti–Zr composite materials with amorphous phase,” Phys. Met. Metallogr. 114, 773–778 (2013).CrossRef A. Yu. Churyumov, A. I. Bazlov, A. N. Solonin, V. Yu. Zadorozhnyi, G. Q. Xie, S. Li, and D. V. Louzguine-Luzgin, “Structure and mechanical properties of Ni–Cu–Ti–Zr composite materials with amorphous phase,” Phys. Met. Metallogr. 114, 773–778 (2013).CrossRef
4.
go back to reference M. H. Lee, K. S. Lee, J. Das, J. Thomas, U. Kühn, and J. Eckert, “Improved plasticity of bulk metallic glasses upon cold rolling,” Scr. Mater. 62, 678–681 (2010).CrossRef M. H. Lee, K. S. Lee, J. Das, J. Thomas, U. Kühn, and J. Eckert, “Improved plasticity of bulk metallic glasses upon cold rolling,” Scr. Mater. 62, 678–681 (2010).CrossRef
5.
go back to reference M. Stolpe, J. J. Kruzic, and R. Busch, “Evolution of shear bands, free volume and hardness during cold rolling of a Zr-based bulk metallic glass,” Acta Mater. 64, 231–240 (2014).CrossRef M. Stolpe, J. J. Kruzic, and R. Busch, “Evolution of shear bands, free volume and hardness during cold rolling of a Zr-based bulk metallic glass,” Acta Mater. 64, 231–240 (2014).CrossRef
6.
go back to reference J. Pan, Y. X. Wang, Q. Guo, D. Zhang, A. L. Greer, and Y. Li, “Extreme rejuvenation and softening in a bulk metallic glass,” Nat. Commun. 9, 560 (2018).CrossRef J. Pan, Y. X. Wang, Q. Guo, D. Zhang, A. L. Greer, and Y. Li, “Extreme rejuvenation and softening in a bulk metallic glass,” Nat. Commun. 9, 560 (2018).CrossRef
7.
go back to reference A. L. Greer, Y. Q. Cheng, and E. Ma, “Shear bands in metallic glasses,” Mater. Sci. Eng., R 74, 71–132 (2013). A. L. Greer, Y. Q. Cheng, and E. Ma, “Shear bands in metallic glasses,” Mater. Sci. Eng., R 74, 71–132 (2013).
8.
go back to reference S. V. Ketov, A. S. Trifonov, Y. P. Ivanov, A. Yu. Churyumov, A. V. Lubenchenko, A. A. Batrakov, J. Jiang, D. V. Louzguine-Luzgin, J. Eckert, J. Orava, and A. L. Greer, “On cryothermal cycling as a method for inducing structural changes in metallic glasses,” NPG Asia Mater. 10, 137–145 (2018).CrossRef S. V. Ketov, A. S. Trifonov, Y. P. Ivanov, A. Yu. Churyumov, A. V. Lubenchenko, A. A. Batrakov, J. Jiang, D. V. Louzguine-Luzgin, J. Eckert, J. Orava, and A. L. Greer, “On cryothermal cycling as a method for inducing structural changes in metallic glasses,” NPG Asia Mater. 10, 137–145 (2018).CrossRef
9.
go back to reference W. Guo, R. Yamada, and J. Saida, “Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment,” Intermetallics 93, 141–147 (2018).CrossRef W. Guo, R. Yamada, and J. Saida, “Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment,” Intermetallics 93, 141–147 (2018).CrossRef
10.
go back to reference J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang, and J. Eckert, “Work-hardenable” ductile bulk metallic glass,” Phys. Rev. Lett. 94, 205501 (2005).CrossRef J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang, and J. Eckert, “Work-hardenable” ductile bulk metallic glass,” Phys. Rev. Lett. 94, 205501 (2005).CrossRef
11.
go back to reference C. C. Hays, C. P. Kim, and W. L. Johnson, “Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions,” Phys. Rev. Lett. 84, 2901–2904 (2000).CrossRef C. C. Hays, C. P. Kim, and W. L. Johnson, “Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions,” Phys. Rev. Lett. 84, 2901–2904 (2000).CrossRef
12.
go back to reference W. H. Wang, Y. Yang, T. G. Nieh, and C. T. Liu, “On the source of plastic flow in metallic glasses: concepts and models,” Intermetallics 67, 81–86 (2015).CrossRef W. H. Wang, Y. Yang, T. G. Nieh, and C. T. Liu, “On the source of plastic flow in metallic glasses: concepts and models,” Intermetallics 67, 81–86 (2015).CrossRef
13.
go back to reference S. H. Xie, X. R. Zeng, H. X. Qian, Q. Hu, and Z. Y. Zheng, “Unusual plastic deformability in a Zr-based bulk metallic glass after structural relaxation,” J. Alloys Compd. 504, 86–90 (2010).CrossRef S. H. Xie, X. R. Zeng, H. X. Qian, Q. Hu, and Z. Y. Zheng, “Unusual plastic deformability in a Zr-based bulk metallic glass after structural relaxation,” J. Alloys Compd. 504, 86–90 (2010).CrossRef
14.
go back to reference Q. Wang, Y. Yang, H. Jiang, C. T. Liu, H. H. Ruan, and J. Lu, “Superior tensile ductility in bulk metallic glass with gradient amorphous structure,” Sci. Rep. 4, 4757 (2014).CrossRef Q. Wang, Y. Yang, H. Jiang, C. T. Liu, H. H. Ruan, and J. Lu, “Superior tensile ductility in bulk metallic glass with gradient amorphous structure,” Sci. Rep. 4, 4757 (2014).CrossRef
15.
go back to reference S. Scudino, B. Jerliu, K. B. Surreddi, U. Kühn, and J. Eckert, “Effect of cold rolling on compressive and tensile mechanical properties of Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass,” J. Alloys Compd. 509, 128–130 (2011).CrossRef S. Scudino, B. Jerliu, K. B. Surreddi, U. Kühn, and J. Eckert, “Effect of cold rolling on compressive and tensile mechanical properties of Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass,” J. Alloys Compd. 509, 128–130 (2011).CrossRef
16.
go back to reference D. V. Louzguine-Luzgin, G. Xie, Q. Zhang, and A. Inoue, “Effect of Fe on the glass-forming ability, structure and devitrification behavior of Zr–Cu–Al bulk glass-forming alloys,” Philos. Mag. A 90, 1955–1968 (2010).CrossRef D. V. Louzguine-Luzgin, G. Xie, Q. Zhang, and A. Inoue, “Effect of Fe on the glass-forming ability, structure and devitrification behavior of Zr–Cu–Al bulk glass-forming alloys,” Philos. Mag. A 90, 1955–1968 (2010).CrossRef
17.
go back to reference A. Caron, Q. S. Zhang, A. Minkow, V. A. Zadorozhnyy, M. Fukuhara, H.-J. Fecht, D. V. Louzguine-Luzgin, and A. Inoue, “Mesostructural effects on the mechanical properties of Zr-based bulk metallic glasses,” Mater. Sci. Eng., A 555, 57–62 (2012).CrossRef A. Caron, Q. S. Zhang, A. Minkow, V. A. Zadorozhnyy, M. Fukuhara, H.-J. Fecht, D. V. Louzguine-Luzgin, and A. Inoue, “Mesostructural effects on the mechanical properties of Zr-based bulk metallic glasses,” Mater. Sci. Eng., A 555, 57–62 (2012).CrossRef
18.
go back to reference D. V. Louzguine-Luzgin, J. Jiang, A. I. Bazlov, V. S. Zolotorevzky, H. Mao, Yu. P. Ivanov, and A. L. Greer, “Phase separation process preventing thermal embrittlement of a Zr–Cu–Fe–Al bulk metallic glass,” Scr. Mater. 167, 31–36 (2019).CrossRef D. V. Louzguine-Luzgin, J. Jiang, A. I. Bazlov, V. S. Zolotorevzky, H. Mao, Yu. P. Ivanov, and A. L. Greer, “Phase separation process preventing thermal embrittlement of a Zr–Cu–Fe–Al bulk metallic glass,” Scr. Mater. 167, 31–36 (2019).CrossRef
19.
go back to reference A. Inoue, Z. Wang, D. V. Louzguine-Luzgin, Y. Han, F. L. Kong, E. Shalaan, and F. Al-Marzouki, “Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys,” J. Alloys Compd. 638, 197–203 (2015).CrossRef A. Inoue, Z. Wang, D. V. Louzguine-Luzgin, Y. Han, F. L. Kong, E. Shalaan, and F. Al-Marzouki, “Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys,” J. Alloys Compd. 638, 197–203 (2015).CrossRef
20.
go back to reference J. He, I. Kaban, N. Mattern, K. Song, B. Sun, J. Zhao, D. H. Kim, J. Eckert, and A. L. Greer, “Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation,” Sci. Rep. 6, 25–32 (2016).CrossRef J. He, I. Kaban, N. Mattern, K. Song, B. Sun, J. Zhao, D. H. Kim, J. Eckert, and A. L. Greer, “Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation,” Sci. Rep. 6, 25–32 (2016).CrossRef
21.
go back to reference Z. Wang, S. V. Ketov, B. Sun, C. Chen, A. Yu. Churyumov, and D. V. Louzguine-Luzgin, “Eutectic crystallization during fracture of Zr–Cu–Co–Al metallic glass,” Mater. Sci. Eng., A 657, 210–214 (2016).CrossRef Z. Wang, S. V. Ketov, B. Sun, C. Chen, A. Yu. Churyumov, and D. V. Louzguine-Luzgin, “Eutectic crystallization during fracture of Zr–Cu–Co–Al metallic glass,” Mater. Sci. Eng., A 657, 210–214 (2016).CrossRef
22.
go back to reference J. Dong, M. Gao, Y. Huan, Y. H. Feng, W. Liu, and W. H. Wang, “Enhanced tensile plasticity of Zr based bulk metallic glasses by a stress induced large scale flow,” J. Alloys Compd. 727, 297–303 (2017).CrossRef J. Dong, M. Gao, Y. Huan, Y. H. Feng, W. Liu, and W. H. Wang, “Enhanced tensile plasticity of Zr based bulk metallic glasses by a stress induced large scale flow,” J. Alloys Compd. 727, 297–303 (2017).CrossRef
23.
go back to reference J. Cheng, J. Wang, Y. Yun, J. Rui, W. Zhao, and F. Li, “A novel core-shell structure reinforced Zr-based metallic glass composite with combined high strength and good tensile ductility,” J. Alloys Compd. 803, 413–416 (2019).CrossRef J. Cheng, J. Wang, Y. Yun, J. Rui, W. Zhao, and F. Li, “A novel core-shell structure reinforced Zr-based metallic glass composite with combined high strength and good tensile ductility,” J. Alloys Compd. 803, 413–416 (2019).CrossRef
24.
go back to reference A. Yu. Churyumov, A. I. Bazlov, A. A. Tsarkov, A. N. Solonin, and D. V. Louzguine-Luzgin, “Microstructure, mechanical properties, and crystallization behavior of Zr-based bulk metallic glasses prepared under a low vacuum,” J. Alloys Compd. 654, 87–94 (2016).CrossRef A. Yu. Churyumov, A. I. Bazlov, A. A. Tsarkov, A. N. Solonin, and D. V. Louzguine-Luzgin, “Microstructure, mechanical properties, and crystallization behavior of Zr-based bulk metallic glasses prepared under a low vacuum,” J. Alloys Compd. 654, 87–94 (2016).CrossRef
25.
go back to reference Z. Wang, S. V. Ketov, C. L. Chen, Y. Shen, Y. Ikuhara, A. A. Tsarkov, D. V. Louzguine-Luzgin, and J. H. Perepezko, “Nucleation and thermal stability of an icosahedral nanophase during the early crystallization stage in Zr–Co–Cu–Al metallic glasses,” Acta Mater. 132, 298–306 (2017).CrossRef Z. Wang, S. V. Ketov, C. L. Chen, Y. Shen, Y. Ikuhara, A. A. Tsarkov, D. V. Louzguine-Luzgin, and J. H. Perepezko, “Nucleation and thermal stability of an icosahedral nanophase during the early crystallization stage in Zr–Co–Cu–Al metallic glasses,” Acta Mater. 132, 298–306 (2017).CrossRef
26.
go back to reference J. Qiao, H. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Mater. Sci. Eng., R 100, 1–69 (2016). J. Qiao, H. Jia, and P. K. Liaw, “Metallic glass matrix composites,” Mater. Sci. Eng., R 100, 1–69 (2016).
27.
go back to reference D. H. Kim, W. T. Kim, E. S. Park, N. Mattern, and J. Eckert, “Phase separation in metallic glasses,” Prog. Mater. Sci. 58, 1103–1172 (2013).CrossRef D. H. Kim, W. T. Kim, E. S. Park, N. Mattern, and J. Eckert, “Phase separation in metallic glasses,” Prog. Mater. Sci. 58, 1103–1172 (2013).CrossRef
28.
go back to reference A. I. Bazlov, A. G. Igrevskaya, N. Yu. Tabachkova, C. Chen, V. V. Cheverikin, A. V. Pozdniakov, J. Jiang, and D. V. Louzguine-Luzgin, “Thermo-mechanical processing of a Zr62.5Cu22.5Fe5Al10 glassy alloy as a way to obtain tensile ductility,” J. Alloys Compd. 853, 157138 (2021).CrossRef A. I. Bazlov, A. G. Igrevskaya, N. Yu. Tabachkova, C. Chen, V. V. Cheverikin, A. V. Pozdniakov, J. Jiang, and D. V. Louzguine-Luzgin, “Thermo-mechanical processing of a Zr62.5Cu22.5Fe5Al10 glassy alloy as a way to obtain tensile ductility,” J. Alloys Compd. 853, 157138 (2021).CrossRef
29.
go back to reference A. G. Igrevskaya and A. I. Bazlov, “Evolution of shear bands in the structure of a zirconium-based amorphous alloy during rolling at different temperatures,” Phys. Met. Metallogr. 122, 121–126 (2021).CrossRef A. G. Igrevskaya and A. I. Bazlov, “Evolution of shear bands in the structure of a zirconium-based amorphous alloy during rolling at different temperatures,” Phys. Met. Metallogr. 122, 121–126 (2021).CrossRef
30.
go back to reference A. S. Aronin and D. V. Louzguine-Luzgin, “On nanovoids formation in shear bands of an amorphous Al-based alloy,” Mech. Mater. 113, 19–23 (2017).CrossRef A. S. Aronin and D. V. Louzguine-Luzgin, “On nanovoids formation in shear bands of an amorphous Al-based alloy,” Mech. Mater. 113, 19–23 (2017).CrossRef
31.
go back to reference B. Li, S. Scudino, B. Gludovatz, and J. J. Kruzic, “Role of pre-existing shear band morphology in controlling the fracture behavior of a Zr–Ti–Cu–Ni–Al bulk metallic glass,” Mater. Sci. Eng., A 786, 139396 (2020).CrossRef B. Li, S. Scudino, B. Gludovatz, and J. J. Kruzic, “Role of pre-existing shear band morphology in controlling the fracture behavior of a Zr–Ti–Cu–Ni–Al bulk metallic glass,” Mater. Sci. Eng., A 786, 139396 (2020).CrossRef
32.
go back to reference B. Shi, Y. Xu, C. Li, W. Jia, Z. Li, and J. Li, “Evolution of free volume and shear band intersections and its effect on hardness of deformed Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass,” J. Alloys Compd. 669, 167–176 (2016).CrossRef B. Shi, Y. Xu, C. Li, W. Jia, Z. Li, and J. Li, “Evolution of free volume and shear band intersections and its effect on hardness of deformed Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass,” J. Alloys Compd. 669, 167–176 (2016).CrossRef
33.
go back to reference F. Li, M. Song, S. Ni, S. Guo, and X. Liao, “Correlation between hardness and shear banding of metallic glasses under nanoindentation,” Mater. Sci. Eng., A 657, 38–42 (2016).CrossRef F. Li, M. Song, S. Ni, S. Guo, and X. Liao, “Correlation between hardness and shear banding of metallic glasses under nanoindentation,” Mater. Sci. Eng., A 657, 38–42 (2016).CrossRef
34.
go back to reference Y. Zhang and H. Hahn, “Quantification of the free volume in Zr45.0Cu39.3Al7.0Ag8.7 bulk metallic glasses subjected to plastic deformation by calorimetric and dilatometric measurements,” J. Alloys Compd. 488 (1), 65–71 (2009).CrossRef Y. Zhang and H. Hahn, “Quantification of the free volume in Zr45.0Cu39.3Al7.0Ag8.7 bulk metallic glasses subjected to plastic deformation by calorimetric and dilatometric measurements,” J. Alloys Compd. 488 (1), 65–71 (2009).CrossRef
35.
go back to reference L. H. Dai and Y. L. Bai, “Basic mechanical behaviors and mechanics of shear banding in BMGs,” Int. J. Impact Eng. 35 (8), 704–716 (2008).CrossRef L. H. Dai and Y. L. Bai, “Basic mechanical behaviors and mechanics of shear banding in BMGs,” Int. J. Impact Eng. 35 (8), 704–716 (2008).CrossRef
36.
go back to reference D. D. E. Brennhaugen, K. Georgarakis, Y. Yokoyama, K. S. Nakayama, L. Arnberg, and R. E. Aune, “Tensile properties of Zr70Ni16Cu6Al8 BMG at room and cryogenic temperatures,” J. Alloys Compd. 742, 952–957 (2018).CrossRef D. D. E. Brennhaugen, K. Georgarakis, Y. Yokoyama, K. S. Nakayama, L. Arnberg, and R. E. Aune, “Tensile properties of Zr70Ni16Cu6Al8 BMG at room and cryogenic temperatures,” J. Alloys Compd. 742, 952–957 (2018).CrossRef
37.
go back to reference S. Scundino and K. B. Surreddi, “Shear band morphology and fracture behavior of cold-rolled Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass under tensile loading,” J. Alloys Compd 708, 722–727 (2017).CrossRef S. Scundino and K. B. Surreddi, “Shear band morphology and fracture behavior of cold-rolled Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass under tensile loading,” J. Alloys Compd 708, 722–727 (2017).CrossRef
38.
go back to reference D. V. Louzguine-Luzgin, C. L. Chen, L. Y. Lin, Z. C. Wang, S. V. Ketov, M. J. Miyama, A. S. Trifonov, A. V. Lubenchenko, and Y. Ikuhara, “Bulk metallic glassy surface native oxide: its atomic structure, growth rate and electrical properties,” Acta Mater. 97, 282–290 (2015).CrossRef D. V. Louzguine-Luzgin, C. L. Chen, L. Y. Lin, Z. C. Wang, S. V. Ketov, M. J. Miyama, A. S. Trifonov, A. V. Lubenchenko, and Y. Ikuhara, “Bulk metallic glassy surface native oxide: its atomic structure, growth rate and electrical properties,” Acta Mater. 97, 282–290 (2015).CrossRef
39.
go back to reference M. Idriss, F. Célarié, Y. Yokoyama, F. Tessier, and T. Rouxel, “Evolution of the elastic modulus of Zr–Cu–Al BMGs during annealing treatment and crystallization: role of Zr/Cu ratio,” J. Non-Cryst. Solids 421, 35–40 (2015).CrossRef M. Idriss, F. Célarié, Y. Yokoyama, F. Tessier, and T. Rouxel, “Evolution of the elastic modulus of Zr–Cu–Al BMGs during annealing treatment and crystallization: role of Zr/Cu ratio,” J. Non-Cryst. Solids 421, 35–40 (2015).CrossRef
40.
go back to reference A. Guinier, “Structure of age-hardened aluminum-copper alloys,” Nature 142, 569–570 (1938).CrossRef A. Guinier, “Structure of age-hardened aluminum-copper alloys,” Nature 142, 569–570 (1938).CrossRef
Metadata
Title
Effect of High-Temperature Rolling and Annealing on the Structure and Properties of a Zirconium Based Amorphous Alloy
Authors
A. G. Firsova
N. Yu. Tabachkova
A. I. Bazlov
Publication date
01-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 8/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21080068

Other articles of this Issue 8/2021

Physics of Metals and Metallography 8/2021 Go to the issue