Skip to main content
Top
Published in: Cellulose 2/2016

28-01-2016 | Original Paper

Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties

Authors: Hesam Taheri, Pieter Samyn

Published in: Cellulose | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rheological properties of microfibrillated cellulose (MFC)/nanofibrillated cellulose (NFC) suspensions have an important role during processing and mixing. In this work, the process parameters for MFC/NFC production within a microfluidizer (i.e., the size of interaction chamber and number of passes) were varied to investigate the influences on morphology, zeta potential, chemical properties and rheological features including viscosity, creep, strain recovery and yield stress behavior. The stability and appropriate viscosity of the fiber suspensions can be controlled by optimizing the processing conditions, resulting in a reduction in fiber diameter and most negative zeta potential value. The viscosity increased with higher amount of fibrillation by using a smaller chamber or higher number of passes, but intermediate plateau values are characteristic for temporary aggregation and breaking-up of the fiber network. The creep response and yield stress have been described by parameters of the Burger model and Herschel–Bulkley model, respectively, showing a more prominent effect on yield stress of chamber size than number of passes. The network formation leads to lower creep compliance and step-like strain recovery. The transition from gel-like to liquid-like behavior as characterized by the dynamic yield point at a specific strain, is almost independent of the processing conditions. Most important, the total number of passes applied in production can be directly related to the rotational Péclet number, which combines rheological and morphological data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abdul Khalil APS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef Abdul Khalil APS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRef
go back to reference Adebajo MO, Frost RL (2004) Infrared and 13C MAS nuclear magnetic resonance spectroscopis study of acetylation of cotton. Spectrochim Acta A 60:449–453CrossRef Adebajo MO, Frost RL (2004) Infrared and 13C MAS nuclear magnetic resonance spectroscopis study of acetylation of cotton. Spectrochim Acta A 60:449–453CrossRef
go back to reference Barnes HA (1999) The yield stress: a review or ‘πανταρει’—everything flows? J Non Newtonian Fluid Mech 81:133–178CrossRef Barnes HA (1999) The yield stress: a review or ‘πανταρει’—everything flows? J Non Newtonian Fluid Mech 81:133–178CrossRef
go back to reference Barnes HA (2000) A handbook of elementary rheology. Institute of Non-Newtonian Fluid Mechanics Wales, University of Wales, Aberystwyth Barnes HA (2000) A handbook of elementary rheology. Institute of Non-Newtonian Fluid Mechanics Wales, University of Wales, Aberystwyth
go back to reference Barry BW (1983) Rheology of dermatological vehicles. Marcel Dekker, New York Barry BW (1983) Rheology of dermatological vehicles. Marcel Dekker, New York
go back to reference Benhamoua K, Dufresne A, Magninc A, Mortha G, Kaddami H (2013) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83CrossRef Benhamoua K, Dufresne A, Magninc A, Mortha G, Kaddami H (2013) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83CrossRef
go back to reference Björkman U (2003) Break-up of suspended fibre networks. Nord Pulp Pap Res J 18:32–37CrossRef Björkman U (2003) Break-up of suspended fibre networks. Nord Pulp Pap Res J 18:32–37CrossRef
go back to reference Bröckel U, Meier W, Wagner G (2013) Product design and engineering: formulation of gels and pastes. Wiley-VCH Verlag, HeidelbergCrossRef Bröckel U, Meier W, Wagner G (2013) Product design and engineering: formulation of gels and pastes. Wiley-VCH Verlag, HeidelbergCrossRef
go back to reference Charani PR, Firouzabadi MD, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20:727–740CrossRef Charani PR, Firouzabadi MD, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20:727–740CrossRef
go back to reference Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20:149–157CrossRef Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20:149–157CrossRef
go back to reference Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ (2010) The apparent yield stress of pulp fiber suspensions. J Rheol 54:1137–1154CrossRef Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ (2010) The apparent yield stress of pulp fiber suspensions. J Rheol 54:1137–1154CrossRef
go back to reference Dinand E, Chanzy H, Vignon M (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188CrossRef Dinand E, Chanzy H, Vignon M (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188CrossRef
go back to reference French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
go back to reference Henn AR, Fraundorf PB (1990) A quantitative measure of the degree of fibrillation of short reinforcing fibres. J Mater Sci 25:659–3663CrossRef Henn AR, Fraundorf PB (1990) A quantitative measure of the degree of fibrillation of short reinforcing fibres. J Mater Sci 25:659–3663CrossRef
go back to reference Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813 Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813
go back to reference Hill RJ (2008) Elastic modulus of microfibrillar cellulose gels. Biomacromolecules 9:2963–2966CrossRef Hill RJ (2008) Elastic modulus of microfibrillar cellulose gels. Biomacromolecules 9:2963–2966CrossRef
go back to reference Hubbe MA (2007) Flocculation and redispersion of cellulosic fiber suspension: a review of effects of hydrodynamic shear and polyelectrolyte. Bioresources 2:296–331 Hubbe MA (2007) Flocculation and redispersion of cellulosic fiber suspension: a review of effects of hydrodynamic shear and polyelectrolyte. Bioresources 2:296–331
go back to reference Iotti M, Gregersen Ø, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145CrossRef Iotti M, Gregersen Ø, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145CrossRef
go back to reference Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461–466CrossRef Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461–466CrossRef
go back to reference Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026CrossRef Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026CrossRef
go back to reference Janardhnan S, Sain M (2011) Targeted disruption of Hydroxyl chemistry and crystallinity in natural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. Bioresources 6:1242–1245 Janardhnan S, Sain M (2011) Targeted disruption of Hydroxyl chemistry and crystallinity in natural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. Bioresources 6:1242–1245
go back to reference Kacuralova M, Capek P, Sasinklova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203CrossRef Kacuralova M, Capek P, Sasinklova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203CrossRef
go back to reference Karande VS, Bharimalla AK, Hadge GB, Mhaske ST, Vigneshwaran N (2011) Nanofibrillation of cotton fibers by disc refiner and its characterization. Fibers Polym 12:399–404CrossRef Karande VS, Bharimalla AK, Hadge GB, Mhaske ST, Vigneshwaran N (2011) Nanofibrillation of cotton fibers by disc refiner and its characterization. Fibers Polym 12:399–404CrossRef
go back to reference Karppinen A, Vesterinen AH, Saarinen T, Pietikäinen P, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390CrossRef Karppinen A, Vesterinen AH, Saarinen T, Pietikäinen P, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390CrossRef
go back to reference Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19:1807–1819CrossRef Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19:1807–1819CrossRef
go back to reference Kataoka Y, Kondo T (1998) FTIR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolec 31:760–764CrossRef Kataoka Y, Kondo T (1998) FTIR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolec 31:760–764CrossRef
go back to reference Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4:281–292CrossRef Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4:281–292CrossRef
go back to reference Kondo T, Togawa E, Brown RM (2001) Nematic ordered cellulose: a concept of glucan chain association. Biomacromolecules 2:1324–1330CrossRef Kondo T, Togawa E, Brown RM (2001) Nematic ordered cellulose: a concept of glucan chain association. Biomacromolecules 2:1324–1330CrossRef
go back to reference Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433CrossRef Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433CrossRef
go back to reference Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustainable Chem. Eng 3:821–832CrossRef Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustainable Chem. Eng 3:821–832CrossRef
go back to reference Lowys MP, Desbrières J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32CrossRef Lowys MP, Desbrières J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32CrossRef
go back to reference Masalova I, Malkin AY, Foudazi R (2008) Yield stress of emulsions and suspensions as measured in steady shearing and in oscillations. Appl Rheol 18:44790–1–44790-8 Masalova I, Malkin AY, Foudazi R (2008) Yield stress of emulsions and suspensions as measured in steady shearing and in oscillations. Appl Rheol 18:44790–1–44790-8
go back to reference Mewis J, Wagner NJ (2009) Current trends in suspension rheology. J Non Newton Fluid Mech 157:147–150CrossRef Mewis J, Wagner NJ (2009) Current trends in suspension rheology. J Non Newton Fluid Mech 157:147–150CrossRef
go back to reference Missoum K, Belgacem N, Krouit M, Martin C, Tapin-Lingua S, Bras J (2010) Influence of fibrillation degree and surface grafting of microfibrillated cellulose on their rheological behavior in aqueous suspension. In: TAPPI Nanotechnology conference for the forest product industry Missoum K, Belgacem N, Krouit M, Martin C, Tapin-Lingua S, Bras J (2010) Influence of fibrillation degree and surface grafting of microfibrillated cellulose on their rheological behavior in aqueous suspension. In: TAPPI Nanotechnology conference for the forest product industry
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
go back to reference Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439CrossRef Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439CrossRef
go back to reference Nelson ML, O’Connor RL (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef Nelson ML, O’Connor RL (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef
go back to reference Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428CrossRef Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428CrossRef
go back to reference Ono H, Shimaya Y, Sato K, Hongo T (2004) 1H spin–spin relaxation time of water and rheological properties of cellulose nanofiber dispersion, transparent cellulose hydrogel (TCG). Polym J 36:684–694CrossRef Ono H, Shimaya Y, Sato K, Hongo T (2004) 1H spin–spin relaxation time of water and rheological properties of cellulose nanofiber dispersion, transparent cellulose hydrogel (TCG). Polym J 36:684–694CrossRef
go back to reference Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Bio-macromolecules 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Bio-macromolecules 8:1934–1941CrossRef
go back to reference Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behavior. Cellulose 19(3):647–659CrossRef Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behavior. Cellulose 19(3):647–659CrossRef
go back to reference Saito T, Nishiyama Y, Putaux J, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef Saito T, Nishiyama Y, Putaux J, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRef
go back to reference Salmén L, Åkertholm M, Hinterstoisser B (2005) Polyssaccharides: structural diversity and functional versatility. New York, USA Salmén L, Åkertholm M, Hinterstoisser B (2005) Polyssaccharides: structural diversity and functional versatility. New York, USA
go back to reference Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
go back to reference Shogrena RL, Peterson SC, Evans KO, Kenar JA (2011) Preparation and characterization of cellulose gels from corn cobs. Carbohydr Polym 86:1351–1357CrossRef Shogrena RL, Peterson SC, Evans KO, Kenar JA (2011) Preparation and characterization of cellulose gels from corn cobs. Carbohydr Polym 86:1351–1357CrossRef
go back to reference Taheri H, Samyn P (2015) Rheological properties and processing of polymer blends with micro- and nanofibrillated cellulose. In: Hakeem KR, Jawaid M, Alothman OY (eds) Agricultural biomass based potential materials. Springer, Switzerland, pp 259–291 Taheri H, Samyn P (2015) Rheological properties and processing of polymer blends with micro- and nanofibrillated cellulose. In: Hakeem KR, Jawaid M, Alothman OY (eds) Agricultural biomass based potential materials. Springer, Switzerland, pp 259–291
go back to reference Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32CrossRef Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32CrossRef
Metadata
Title
Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties
Authors
Hesam Taheri
Pieter Samyn
Publication date
28-01-2016
Publisher
Springer Netherlands
Published in
Cellulose / Issue 2/2016
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-0866-5

Other articles of this Issue 2/2016

Cellulose 2/2016 Go to the issue