Skip to main content
Top
Published in: Metal Science and Heat Treatment 9-10/2015

01-01-2015

Effect of Hot Pressing Modes on the Structure and Properties of an ‘Aluminum – Carbon Nanofibers’ Composite Material

Authors: A. I. Rudskoy, T. S. Koltsova, F. M. Shakhov, O. V. Tolochko, V. G. Mikhailov

Published in: Metal Science and Heat Treatment | Issue 9-10/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The possibility of fabricating ‘aluminum – carbon nanofibers’ compact materials by hot pressing at a pressure of 5 GPa and a temperature of 480 – 980°C is studied. It is shown that aluminum carbide forms in the case of hot pressing above 720°C. The hardness of the hot-pressed aluminum – carbon nanofibers’ composite material is 80% higher than that of pure aluminum at a satisfactory ductility.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. S. Dresselhaus, G. Dresselhaus, and P. C. Ekund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego (1996). M. S. Dresselhaus, G. Dresselhaus, and P. C. Ekund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego (1996).
2.
go back to reference S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced material matrix composites — a review,” Int. Mater. Rev., 55(1), 41 – 64 (2010).CrossRef S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced material matrix composites — a review,” Int. Mater. Rev., 55(1), 41 – 64 (2010).CrossRef
3.
go back to reference R. S. Ruoff and D. S. Lorents, “Mechanical and thermal properties of carbon nanotubes,” Carbon, 33(7), 925 – 930 (1955).CrossRef R. S. Ruoff and D. S. Lorents, “Mechanical and thermal properties of carbon nanotubes,” Carbon, 33(7), 925 – 930 (1955).CrossRef
4.
go back to reference P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge University Press (2010). P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge University Press (2010).
5.
go back to reference Y. H. Lee, “The physical property and application of carbon nanotube,” Sae Mulli, 51, 84 – 144 (2005). Y. H. Lee, “The physical property and application of carbon nanotube,” Sae Mulli, 51, 84 – 144 (2005).
6.
go back to reference D. S. So, I. H. Lee, G. J. Bae, and W. J. Bak, “R&D and market trend of carbon nanotube devices,” Prosp. Ind. Chem., 10, 58 – 66 (2007). D. S. So, I. H. Lee, G. J. Bae, and W. J. Bak, “R&D and market trend of carbon nanotube devices,” Prosp. Ind. Chem., 10, 58 – 66 (2007).
7.
go back to reference C. Qin, X. Shi, S. Q. Bai, et al., “High temperature electrical and thermal properties of the bulk carbon nanotube prepared by SPS,” Mater. Sci. Eng. A, 420, 208 – 211 (2006).CrossRef C. Qin, X. Shi, S. Q. Bai, et al., “High temperature electrical and thermal properties of the bulk carbon nanotube prepared by SPS,” Mater. Sci. Eng. A, 420, 208 – 211 (2006).CrossRef
8.
go back to reference A. I. Rudskoy, O. V. Tolochko, T. S. Koltsova, and A. G. Nasibulin, “Synthesis of carbon nanofibers on the surface of aluminum powder particles,” Metalloved. Term. Obrab. Met., No. 10, 53 – 57 (2013). A. I. Rudskoy, O. V. Tolochko, T. S. Koltsova, and A. G. Nasibulin, “Synthesis of carbon nanofibers on the surface of aluminum powder particles,” Metalloved. Term. Obrab. Met., No. 10, 53 – 57 (2013).
9.
go back to reference C. Deng, D. Z. Wang, X. X. Zhang, and A. B. Li, “Processing and properties of carbon nanotubes/aluminum matrix composites,” Mater. Sci. Eng. A, 444, 138 – 145 (2007).CrossRef C. Deng, D. Z. Wang, X. X. Zhang, and A. B. Li, “Processing and properties of carbon nanotubes/aluminum matrix composites,” Mater. Sci. Eng. A, 444, 138 – 145 (2007).CrossRef
10.
go back to reference S. V. Kidalov, F.M. Shakhov, V.M. Davidenko, et al., “Effect of carbon materials on the graphite – diamond phase transition at high pressures and temperatures,” Fiz. Tverd. Tela, 50(5), 940 – 944 (2008). S. V. Kidalov, F.M. Shakhov, V.M. Davidenko, et al., “Effect of carbon materials on the graphite – diamond phase transition at high pressures and temperatures,” Fiz. Tverd. Tela, 50(5), 940 – 944 (2008).
11.
go back to reference S. V. Kidalov, F. M. Shakhov, V. M. Davidenko, et al., “Static synthesis of microdiamond from a blend containing nanodiamonds,” Pis’ma Zh. Tekh. Fiz., 34(15), 16 – 21 (2008). S. V. Kidalov, F. M. Shakhov, V. M. Davidenko, et al., “Static synthesis of microdiamond from a blend containing nanodiamonds,” Pis’ma Zh. Tekh. Fiz., 34(15), 16 – 21 (2008).
12.
go back to reference A. P. Babichev, N. A. Babushkina, and A. M. Bratkovskii, Physical Quantities. A Handbook [in Russian], Énergoatomizdat, Moscow (1991), 1232 p. A. P. Babichev, N. A. Babushkina, and A. M. Bratkovskii, Physical Quantities. A Handbook [in Russian], Énergoatomizdat, Moscow (1991), 1232 p.
13.
go back to reference T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, et al., “High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs,” Carbon, 43, 153 – 161 (2005).CrossRef T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, et al., “High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs,” Carbon, 43, 153 – 161 (2005).CrossRef
14.
go back to reference S. J. Lindsay (ed.), Light Metals, John Wiley and Sons (2011), 1232 p. S. J. Lindsay (ed.), Light Metals, John Wiley and Sons (2011), 1232 p.
15.
go back to reference L.-Y. Kim, J.-H. Lee, G.-S. Lee, and S.-H. Baiket, “Friction and wear characteristics of the carbon nanotube-aluminum composites with different manufacturing conditions,” Wear, 267, 593 – 598 (2009).CrossRef L.-Y. Kim, J.-H. Lee, G.-S. Lee, and S.-H. Baiket, “Friction and wear characteristics of the carbon nanotube-aluminum composites with different manufacturing conditions,” Wear, 267, 593 – 598 (2009).CrossRef
16.
go back to reference A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, “High thermal conductivity composites consisting of diamond filler and copper (silver) matrix,” J. Mater. Sci., 46, 1424 – 1438 (2011).CrossRef A. M. Abyzov, S. V. Kidalov, and F. M. Shakhov, “High thermal conductivity composites consisting of diamond filler and copper (silver) matrix,” J. Mater. Sci., 46, 1424 – 1438 (2011).CrossRef
17.
go back to reference K. Chu, H. Guo, C. Jia, et al., “Thermal properties of carbon nanotube-copper composites for thermal management applications,” Nanoscale Res. Lett., 5, 868 – 874 (2010).CrossRef K. Chu, H. Guo, C. Jia, et al., “Thermal properties of carbon nanotube-copper composites for thermal management applications,” Nanoscale Res. Lett., 5, 868 – 874 (2010).CrossRef
18.
go back to reference J. Barcena, Garcia de Cortazar, R. Seddon, et al., “Effect of the incorporation of interfacial elements on the thermophysical properties of Cu/VGCNFs composites,” Compos. Sci. Technol., 70(16), 2258 – 2262 (2010).CrossRef J. Barcena, Garcia de Cortazar, R. Seddon, et al., “Effect of the incorporation of interfacial elements on the thermophysical properties of Cu/VGCNFs composites,” Compos. Sci. Technol., 70(16), 2258 – 2262 (2010).CrossRef
19.
go back to reference J. M. Ullbrand, J. M. Cordoba, J. Tamayo-Ariztondo, et al., “Thermomechanical properties of copper-carbon nanofibre composites prepared by spark sintering and hot pressing,” Compos. Sci. Technol., 70(16), 2263 – 2268 (2010).CrossRef J. M. Ullbrand, J. M. Cordoba, J. Tamayo-Ariztondo, et al., “Thermomechanical properties of copper-carbon nanofibre composites prepared by spark sintering and hot pressing,” Compos. Sci. Technol., 70(16), 2263 – 2268 (2010).CrossRef
20.
go back to reference J. C. Lloyd, E. Neubauer, J. Barcena, and W. J. Clegg, “Effect of titanium on copper-titanium/carbon nanofibre composite materials,” Compos. Sci. Technol., 70(16), 2284 – 2289 (2010).CrossRef J. C. Lloyd, E. Neubauer, J. Barcena, and W. J. Clegg, “Effect of titanium on copper-titanium/carbon nanofibre composite materials,” Compos. Sci. Technol., 70(16), 2284 – 2289 (2010).CrossRef
21.
go back to reference V. M. Beletskiy, and G. A. Krivov, Aluminum Alloys. Composition, Properties, Technology, Application [in Russian], “KOMINTEKh,” Kiev (2005), 365 p. V. M. Beletskiy, and G. A. Krivov, Aluminum Alloys. Composition, Properties, Technology, Application [in Russian], “KOMINTEKh,” Kiev (2005), 365 p.
Metadata
Title
Effect of Hot Pressing Modes on the Structure and Properties of an ‘Aluminum – Carbon Nanofibers’ Composite Material
Authors
A. I. Rudskoy
T. S. Koltsova
F. M. Shakhov
O. V. Tolochko
V. G. Mikhailov
Publication date
01-01-2015
Publisher
Springer US
Published in
Metal Science and Heat Treatment / Issue 9-10/2015
Print ISSN: 0026-0673
Electronic ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-015-9793-6

Other articles of this Issue 9-10/2015

Metal Science and Heat Treatment 9-10/2015 Go to the issue

III INTERNATIONAL SCIENTIFIC AND ENGINEERING CONFERENCE “NANOTECHNOLOGIES OF FUNCTIONALMATERIALS”

Additive Technologies Based on Composite Powder Nanomaterials

Premium Partners