Skip to main content
Top

2015 | OriginalPaper | Chapter

4. Effect of Humic Substances and Bioorganic Substrates from Urban Wastes in Nanostructured Materials Applications and Synthesis

Authors : G. Magnacca, E. Laurenti, M. C. Gonzalez

Published in: Soluble Bio-based Substances Isolated From Urban Wastes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Humic substances were widely studied for preparing materials to be used for adsorption, photocatalysis and so on. Their parent soluble bio-organic materials (SBO) have potentially similar applications which have to be evaluated. The main advantage of the use of SBO substances concerns their low cost, but they are appealing also for the development of a strategy of recycle and reuse of wastes which needs to be followed worldwide. The application of SBO in materials synthesis is promizing, since they can be used as synthesis intermediates but also as active phases for developing adsorbing and/or photoactive materials usable for environmental applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dudare, D., & Klavins, M. (2013). Peat humic substances as sorbent for nanomaterials. In 13th SGEM GeoConference on Nano, Bio and Green-Technologies for a Sustainable Future (pp. 67–74.). www.sgem.org, SGEM2013 Conference Proceedings. ISBN 978-619-7105-06-3/ISSN 1314-2704. Dudare, D., & Klavins, M. (2013). Peat humic substances as sorbent for nanomaterials. In 13th SGEM GeoConference on Nano, Bio and Green-Technologies for a Sustainable Future (pp. 67–74.). www.​sgem.​org, SGEM2013 Conference Proceedings. ISBN 978-619-7105-06-3/ISSN 1314-2704.
2.
go back to reference Montoneri, E., Boffa, V., Quagliotto, P. L., Mendich, R., Chierotti, M. R., Gobetto, R., & Medana, C. (2008). Humic acid-like matter isolated from green urban wastes. Part I: Structure and surfactant properties. BioResources, 3, 123–141. Montoneri, E., Boffa, V., Quagliotto, P. L., Mendich, R., Chierotti, M. R., Gobetto, R., & Medana, C. (2008). Humic acid-like matter isolated from green urban wastes. Part I: Structure and surfactant properties. BioResources, 3, 123–141.
3.
go back to reference Montoneri, E., Savarino, P., Bottigliengo, S., Musso, G., Boffa, V., Bianco Prevot, A., et al. (2008). Humic acid-like matter isolated from green urban wastes. Part II: Performance in chemical and environmental technologies. BioResources, 3, 217–233. Montoneri, E., Savarino, P., Bottigliengo, S., Musso, G., Boffa, V., Bianco Prevot, A., et al. (2008). Humic acid-like matter isolated from green urban wastes. Part II: Performance in chemical and environmental technologies. BioResources, 3, 217–233.
4.
go back to reference Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. F. (1994). Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environmental Science and Technology, 28, 38–46.CrossRef Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. F. (1994). Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environmental Science and Technology, 28, 38–46.CrossRef
5.
go back to reference Zhang, Y., Chen, Y., Westerhoff, P., & Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 43, 4249–4257.CrossRef Zhang, Y., Chen, Y., Westerhoff, P., & Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 43, 4249–4257.CrossRef
6.
go back to reference Adegboyega, N. F., Sharma, V. K., Siskova, K., Zbořil, R., Sohn, M., & Schultz, B. J. (2013). Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Environmental Science and Technology, 47, 757–764.CrossRef Adegboyega, N. F., Sharma, V. K., Siskova, K., Zbořil, R., Sohn, M., & Schultz, B. J. (2013). Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Environmental Science and Technology, 47, 757–764.CrossRef
7.
go back to reference Yang, K., Lin, D., & Xing, B. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir, 25, 3571–3576.CrossRef Yang, K., Lin, D., & Xing, B. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir, 25, 3571–3576.CrossRef
8.
go back to reference Ohashi, H., & Nakazawa, H. (1996). The microstructure of humic acid montmorillonite composites. Clay Minerals, 31, 347–354.CrossRef Ohashi, H., & Nakazawa, H. (1996). The microstructure of humic acid montmorillonite composites. Clay Minerals, 31, 347–354.CrossRef
9.
go back to reference Illés, E., & Tombácz, E. (2006). The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science, 295, 115–123.CrossRef Illés, E., & Tombácz, E. (2006). The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science, 295, 115–123.CrossRef
10.
go back to reference Maris, K., & Linda, A. (2009). Study of interaction between humic acids and fullerene C60 using fluorescence quenching approach. Ecological Chemistry and Engineering S, 17, 351–362. Maris, K., & Linda, A. (2009). Study of interaction between humic acids and fullerene C60 using fluorescence quenching approach. Ecological Chemistry and Engineering S, 17, 351–362.
11.
go back to reference Klavins, M., Ansone, L., & Zicmanis, A. (2011). Behaviour of nanomaterials in the environment: A study of interaction between humic acids and fullerene C60. Latvian Journal of Chemistry, 49, 283–293. Klavins, M., Ansone, L., & Zicmanis, A. (2011). Behaviour of nanomaterials in the environment: A study of interaction between humic acids and fullerene C60. Latvian Journal of Chemistry, 49, 283–293.
12.
go back to reference Chappell, M. A., George, A. J., Dontsova, K. M., Porter, B. E., Price, C. L., Zhou, P., et al. (2009). Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Environmental Pollution, 157, 1081–1087.CrossRef Chappell, M. A., George, A. J., Dontsova, K. M., Porter, B. E., Price, C. L., Zhou, P., et al. (2009). Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Environmental Pollution, 157, 1081–1087.CrossRef
13.
go back to reference Chen, K., & Elimelech, M. (2008). Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: Measurements, mechanisms, and environmental implications. Environmental Science and Technology, 42, 7607–7614.CrossRef Chen, K., & Elimelech, M. (2008). Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: Measurements, mechanisms, and environmental implications. Environmental Science and Technology, 42, 7607–7614.CrossRef
14.
go back to reference Tang, W.-W., Zeng, G.-M., Gong, J.-L., Liang, J., Xu, P., Zhang, C., & Huang, B.-B. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of the Total Environment, 468–469, 1014–1027.CrossRef Tang, W.-W., Zeng, G.-M., Gong, J.-L., Liang, J., Xu, P., Zhang, C., & Huang, B.-B. (2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of the Total Environment, 468–469, 1014–1027.CrossRef
15.
go back to reference Liu, J.-F., Zhao, Z.-S., & Jiang, G.-B. (2008). Coating Fe3O4 Magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science and Technology, 42, 6949–6954.CrossRef Liu, J.-F., Zhao, Z.-S., & Jiang, G.-B. (2008). Coating Fe3O4 Magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science and Technology, 42, 6949–6954.CrossRef
16.
go back to reference Amstaetter, K., Borch, T., & Kappler, A. (2012). Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica et Cosmochimica Acta, 85, 326–341.CrossRef Amstaetter, K., Borch, T., & Kappler, A. (2012). Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochimica et Cosmochimica Acta, 85, 326–341.CrossRef
17.
go back to reference Sanchez, C., Julian, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15, 3559–3592.CrossRef Sanchez, C., Julian, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15, 3559–3592.CrossRef
18.
go back to reference Mercado, D. F., Magnacca, G., Malandrino, M., Rubert, A., Montoneri, E., Celi, L., et al. (2014). Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A Bio-organic substrates-mediated synthesis. ACS Applied Materials and Interface, 6, 3937–3946.CrossRef Mercado, D. F., Magnacca, G., Malandrino, M., Rubert, A., Montoneri, E., Celi, L., et al. (2014). Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A Bio-organic substrates-mediated synthesis. ACS Applied Materials and Interface, 6, 3937–3946.CrossRef
19.
go back to reference Montoneri, E., Mainero, D., Boffa, V., Perrone, D. G., & Montoneri, C. (2011). Biochemenergy: a project to turn an urban wastes treatment plant into biorefinery for the production of energy, chemicals and consumer’s products with friendly environmental impact. International Journal of Global Environment Issues, 11, 170–196.CrossRef Montoneri, E., Mainero, D., Boffa, V., Perrone, D. G., & Montoneri, C. (2011). Biochemenergy: a project to turn an urban wastes treatment plant into biorefinery for the production of energy, chemicals and consumer’s products with friendly environmental impact. International Journal of Global Environment Issues, 11, 170–196.CrossRef
20.
go back to reference Bianco Prevot, A., Fabbri, D., Pramauro, E., Baiocchi, C., Medana, C., Montoneri, E., & Boffa, V. (2010). Sensitizing effect of bio-based chemicals from urban wastes on the photodegradation of azo-dyes. Journal of Photochemistry and Photobiology A: Chemistry, 209, 224–231.CrossRef Bianco Prevot, A., Fabbri, D., Pramauro, E., Baiocchi, C., Medana, C., Montoneri, E., & Boffa, V. (2010). Sensitizing effect of bio-based chemicals from urban wastes on the photodegradation of azo-dyes. Journal of Photochemistry and Photobiology A: Chemistry, 209, 224–231.CrossRef
21.
go back to reference Bianco Prevot, A., Avetta, P., Fabbri, D., Laurenti, E., Marchis, T., Perrone, D. G., et al. (2011). Waste derived bioorganic substances for light induced generation of reactive oxygenated species. ChemSusChem, 4, 85–90.CrossRef Bianco Prevot, A., Avetta, P., Fabbri, D., Laurenti, E., Marchis, T., Perrone, D. G., et al. (2011). Waste derived bioorganic substances for light induced generation of reactive oxygenated species. ChemSusChem, 4, 85–90.CrossRef
22.
go back to reference Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., et al. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176–180.CrossRef Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., et al. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176–180.CrossRef
23.
go back to reference Montoneri, E., Boffa, V., Savarino, P., Perrone, D. G., Montoneri, C., Mendichi, R., et al. (2010). Behaviour and properties in aqueous solution of bio-polymers isolated from urban refuse. Biomacromolecules, 11, 3036–3042.CrossRef Montoneri, E., Boffa, V., Savarino, P., Perrone, D. G., Montoneri, C., Mendichi, R., et al. (2010). Behaviour and properties in aqueous solution of bio-polymers isolated from urban refuse. Biomacromolecules, 11, 3036–3042.CrossRef
24.
go back to reference Boffa, V., Perrone, D. G., Montoneri, E., Magnacca, G., Bertinetti, L., Garlasco, L., & Mendichi, R. (2010). A waste derived biosurfactant for preparation of templated silica powders. ChemSusChem, 3, 445–452.CrossRef Boffa, V., Perrone, D. G., Montoneri, E., Magnacca, G., Bertinetti, L., Garlasco, L., & Mendichi, R. (2010). A waste derived biosurfactant for preparation of templated silica powders. ChemSusChem, 3, 445–452.CrossRef
25.
go back to reference Carlos, L., Cipollone, M., Soria, D. B., Sergio Moreno, M., Ogilby, P. R., García Einschlag, F. S., & Mártire, D. O. (2012). The effect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species. Separation and Purification Technology, 91, 23–29.CrossRef Carlos, L., Cipollone, M., Soria, D. B., Sergio Moreno, M., Ogilby, P. R., García Einschlag, F. S., & Mártire, D. O. (2012). The effect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species. Separation and Purification Technology, 91, 23–29.CrossRef
26.
go back to reference Magnacca, G., Allera, A., Montoneri, E., Celi, L., Benito, D. E., Gagliardi, L. G., et al. (2014). ACS Sustainable Chemistry & Engineering, 2, 1518–1524.CrossRef Magnacca, G., Allera, A., Montoneri, E., Celi, L., Benito, D. E., Gagliardi, L. G., et al. (2014). ACS Sustainable Chemistry & Engineering, 2, 1518–1524.CrossRef
27.
go back to reference Silva, A. R., Wilson, K., Clark, J. H., & Freire, C. (2006). Covalent attachment of chiral manganese(III) salen complexes onto functionalised hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes. Microporous and Mesoporous Materials, 91, 128–138.CrossRef Silva, A. R., Wilson, K., Clark, J. H., & Freire, C. (2006). Covalent attachment of chiral manganese(III) salen complexes onto functionalised hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes. Microporous and Mesoporous Materials, 91, 128–138.CrossRef
28.
go back to reference Testa, M. L., Tummino, M. L., Agostini, S., Avetta, P., Deganello, F., Montoneri, E., Magnacca, G., Bianco Prevot, A. Synthesis, characterization and environmental application of silicas modified with waste-derived photoactive substances. Submitted to Chemical Engineering Journal. Testa, M. L., Tummino, M. L., Agostini, S., Avetta, P., Deganello, F., Montoneri, E., Magnacca, G., Bianco Prevot, A. Synthesis, characterization and environmental application of silicas modified with waste-derived photoactive substances. Submitted to Chemical Engineering Journal.
29.
go back to reference Magnacca, G., Laurenti, E., Vigna, E., Franzoso, F., Tomasso, L., Montoneri, E., & Boffa, V. (2012). Refuse derived bio-organics and immobilizer soybean peroxidase for green chemical technology. Process Biochemistry, 47, 2025–2031.CrossRef Magnacca, G., Laurenti, E., Vigna, E., Franzoso, F., Tomasso, L., Montoneri, E., & Boffa, V. (2012). Refuse derived bio-organics and immobilizer soybean peroxidase for green chemical technology. Process Biochemistry, 47, 2025–2031.CrossRef
30.
go back to reference Knechtel, R. (2005). Glass frit bonding: an universal technology for wafer level encapsulation and packaging. Microsystem Technologies, 12, 63–68.CrossRef Knechtel, R. (2005). Glass frit bonding: an universal technology for wafer level encapsulation and packaging. Microsystem Technologies, 12, 63–68.CrossRef
31.
go back to reference Lupasteanu, A. M., Laurenti, E., Magnacca, G., & Montoneri, E. (2012). New monolith configuration for the immobilization of lipase from Candida antarctica. Environment Engineering and Management Journal, 11, 2023–2028. Lupasteanu, A. M., Laurenti, E., Magnacca, G., & Montoneri, E. (2012). New monolith configuration for the immobilization of lipase from Candida antarctica. Environment Engineering and Management Journal, 11, 2023–2028.
32.
go back to reference Deganello, F., Marcì, G., & Deganello, G. (2009). Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach. Journal of the European Ceramic Society, 29, 439–450.CrossRef Deganello, F., Marcì, G., & Deganello, G. (2009). Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach. Journal of the European Ceramic Society, 29, 439–450.CrossRef
33.
go back to reference Deganello, F., Tummino, M. L., Calabrese, C., Testa, M. L., Avetta, P., Fabbri, D., Bianco Prevot, A., Montoneri, E., Magnacca, G. (2014). New eco-friendly LaFeO3 material prepared from urban wastes New Journal of Chemistry, 2014. doi:10.1039/C4NJ01279H. Deganello, F., Tummino, M. L., Calabrese, C., Testa, M. L., Avetta, P., Fabbri, D., Bianco Prevot, A., Montoneri, E., Magnacca, G. (2014). New eco-friendly LaFeO3 material prepared from urban wastes New Journal of Chemistry, 2014. doi:10.​1039/​C4NJ01279H.
34.
go back to reference Magnacca, G., Spezzati, G., Deganello, F., & Testa, M. L. (2013). A new in situ methodology for the quantification of the oxygen storage potential in perovskite-type materials. RSC Advances, 3, 26352–26360.CrossRef Magnacca, G., Spezzati, G., Deganello, F., & Testa, M. L. (2013). A new in situ methodology for the quantification of the oxygen storage potential in perovskite-type materials. RSC Advances, 3, 26352–26360.CrossRef
35.
go back to reference Jabariyan, S., & Zanjanchi, M. A. (2012). A simple and fast sonication procedure to remove surfactant templates from mesoporous MCM-41. Ultrasonics Sonochemistry, 19, 1087–1093.CrossRef Jabariyan, S., & Zanjanchi, M. A. (2012). A simple and fast sonication procedure to remove surfactant templates from mesoporous MCM-41. Ultrasonics Sonochemistry, 19, 1087–1093.CrossRef
36.
go back to reference Boffa, V., Perrone, D. G., Magnacca, G., & Montoneri, E. (2014). Role of a waste-derived biosurfactant in the sol-gel synthesis of nanocrystalline titanium dioxide. Ceramic International, 40, 12161–12169.CrossRef Boffa, V., Perrone, D. G., Magnacca, G., & Montoneri, E. (2014). Role of a waste-derived biosurfactant in the sol-gel synthesis of nanocrystalline titanium dioxide. Ceramic International, 40, 12161–12169.CrossRef
37.
go back to reference He, W., Cui, J., Yue, Y., Zhang, X., Xia, X., Liu, H., & Lui, S. (2011). High-performance TiO2 from Baker’s yeast. Journal of Colloid and Interface Science, 354, 109–115.CrossRef He, W., Cui, J., Yue, Y., Zhang, X., Xia, X., Liu, H., & Lui, S. (2011). High-performance TiO2 from Baker’s yeast. Journal of Colloid and Interface Science, 354, 109–115.CrossRef
Metadata
Title
Effect of Humic Substances and Bioorganic Substrates from Urban Wastes in Nanostructured Materials Applications and Synthesis
Authors
G. Magnacca
E. Laurenti
M. C. Gonzalez
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-14744-4_4