Skip to main content
Top

2019 | OriginalPaper | Chapter

6. Effect of Hybrid Photocatalysis and Ceramic Membrane Filtration Process for Humic Acid Degradation

Authors : Lili Song, Bo Zhu, Veeriah Jegatheesan, Stephen R. Gray, Mikel C. Duke, Shobha Muthukumaran

Published in: Water Scarcity and Ways to Reduce the Impact

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The photocatalytic degradation of humic acid (HA) in aqueous suspension using commercial TiO2 powder (Degussa P 25) irradiated with UV light was investigated. Photocatalytic experiments were carried out as an individual treatment and combined with ceramic membrane filtration. In this study, the photocatalytic oxidation of HA was investigated and compared at different operating conditions. The effects of operating parameters such as TiO2 concentrations, HA concentrations, and UV intensity were evaluated on the performance of photocatalytic oxidation process. The effect of salinity on the performance of combined photocatalysis and ceramic microfiltration (MF) system was investigated. The interaction between the components in the system, HA, NaCl, and TiO2 photocatalyst, played an important role in the observed flux change during ceramic MF. The result showed that TiO2 concentrations of 0.5 g/L resulted in significant HA removals of more than 80% after 120 min of photocatalytic oxidation process alone. The result shows that the flux decline was lower in the presence of NaCl compared to absence of NaCl. The observed permeate flux decline behavior during ceramic MF was associated with the composition of HA, and NaCl and TiO2 concentrations after photocatalytic treatment. The results for this hybrid system showed that the DOC removal was 48% in the absence of NaCl and 51 and 55% for 500 and 1000 mg/L NaCl concentrations, respectively after 75 min (15 min dark and 60 min photocatalytic reaction) of photocatalysis and 30 min of ceramic MF. On the other hand, the reduction in UV absorbance with and without NaCl concentrations was more than 75% for this hybrid system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Barredo-Damas, S., Alcaina-Miranda, M. I., Iborra-Clar, M. I., & Mendoza-Roca, J. A. (2012). Application of tubular ceramic ultrafiltration membranes for the treatment of integrated textile wastewaters. Chemical Engineering Journal, 192, 211–218.CrossRef Barredo-Damas, S., Alcaina-Miranda, M. I., Iborra-Clar, M. I., & Mendoza-Roca, J. A. (2012). Application of tubular ceramic ultrafiltration membranes for the treatment of integrated textile wastewaters. Chemical Engineering Journal, 192, 211–218.CrossRef
go back to reference Benotti, M. J., Stanford, B. D., Wert, E. C., & Snyder, S. A. (2009). Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Research, 43, 1513–1522.CrossRef Benotti, M. J., Stanford, B. D., Wert, E. C., & Snyder, S. A. (2009). Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Research, 43, 1513–1522.CrossRef
go back to reference BertellI, M., & Selli, E. (2006). Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol. Journal of Hazardous Materials, 138, 46–52.CrossRef BertellI, M., & Selli, E. (2006). Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol. Journal of Hazardous Materials, 138, 46–52.CrossRef
go back to reference Campinas, M., & Rosa, M. J. (2010). Assessing PAC contribution to the NOM fouling control in PAC/UF systems. Water Research, 44, 1636–1644.CrossRef Campinas, M., & Rosa, M. J. (2010). Assessing PAC contribution to the NOM fouling control in PAC/UF systems. Water Research, 44, 1636–1644.CrossRef
go back to reference Cassano, A. E., & Alfano, O. M. (2000). Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catalysis Today, 58, 167–197.CrossRef Cassano, A. E., & Alfano, O. M. (2000). Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catalysis Today, 58, 167–197.CrossRef
go back to reference Chin, S. S., Chiang, K., & Fane, A. G. (2006). The stability of polymeric membranes in a TiO2 photocatalysis process. Journal of Membrane Science, 275, 202–211.CrossRef Chin, S. S., Chiang, K., & Fane, A. G. (2006). The stability of polymeric membranes in a TiO2 photocatalysis process. Journal of Membrane Science, 275, 202–211.CrossRef
go back to reference Damodar, R. A., You, S.-J., & Ou, S.-H. (2010). Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Separation and Purification Technology, 76, 64–71.CrossRef Damodar, R. A., You, S.-J., & Ou, S.-H. (2010). Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Separation and Purification Technology, 76, 64–71.CrossRef
go back to reference Daneshvar, N., Salari, D., & Khataee, A. R. (2003). Photocatalytic degradation of azo dye acid red 14 in water: Investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology A: Chemistry, 157, 111–116.CrossRef Daneshvar, N., Salari, D., & Khataee, A. R. (2003). Photocatalytic degradation of azo dye acid red 14 in water: Investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology A: Chemistry, 157, 111–116.CrossRef
go back to reference Dow, N., Murphy, D., Clement, J., & Duke, M. (2013). Outcomes of the Australian ozone/ceramic membrane trial on secondary effluent: [Performance results from a trial using ozone combined with ceramic membranes to treat secondary effluent at Eastern Treatment Plant in Melbourne.]. Water (Melbourne), 40, 45. Dow, N., Murphy, D., Clement, J., & Duke, M. (2013). Outcomes of the Australian ozone/ceramic membrane trial on secondary effluent: [Performance results from a trial using ozone combined with ceramic membranes to treat secondary effluent at Eastern Treatment Plant in Melbourne.]. Water (Melbourne), 40, 45.
go back to reference Esplugas, S., Giménez, J., Contreras, S., Pascual, E., & Rodrı́guez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Research, 36, 1034–1042.CrossRef Esplugas, S., Giménez, J., Contreras, S., Pascual, E., & Rodrı́guez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Research, 36, 1034–1042.CrossRef
go back to reference Fu, J., Ji, M., Wang, Z., Jin, L., & An, D. (2006). A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst. Journal of Hazardous Materials, 131, 238–242.CrossRef Fu, J., Ji, M., Wang, Z., Jin, L., & An, D. (2006). A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst. Journal of Hazardous Materials, 131, 238–242.CrossRef
go back to reference Glaze, W. L., Kenneke, J. F., & Ferry, J. L. (1993). Chlorinated byproducts from the Ti0,-mediated photodegradation of trichloroethylene and tetrachloroethylene in water. Environmental Science and Technology, 27, 177–184.CrossRef Glaze, W. L., Kenneke, J. F., & Ferry, J. L. (1993). Chlorinated byproducts from the Ti0,-mediated photodegradation of trichloroethylene and tetrachloroethylene in water. Environmental Science and Technology, 27, 177–184.CrossRef
go back to reference Gray, S. R., Ritchie, C. B., Tran, T., & Bolto, B. A. (2007). Effect of NOM characteristics and membrane type on microfiltration performance. Water Research, 41, 3833–3841.CrossRef Gray, S. R., Ritchie, C. B., Tran, T., & Bolto, B. A. (2007). Effect of NOM characteristics and membrane type on microfiltration performance. Water Research, 41, 3833–3841.CrossRef
go back to reference Horng, R.-Y., Huang, C., Chang, M.-C., Shao, H., Shiau, B.-L., & Hu, Y.-J. (2009). Application of TiO2 photocatalytic oxidation and non-woven membrane filtration hybrid system for degradation of 4-chlorophenol. Desalination, 245, 169–182.CrossRef Horng, R.-Y., Huang, C., Chang, M.-C., Shao, H., Shiau, B.-L., & Hu, Y.-J. (2009). Application of TiO2 photocatalytic oxidation and non-woven membrane filtration hybrid system for degradation of 4-chlorophenol. Desalination, 245, 169–182.CrossRef
go back to reference Huang, H., Lee, N., Young, T., Gary, A., Lozier, J. C., & Jacangelo, J. G. (2007). Natural organic matter fouling of low-pressure, hollow-fiber membranes: Effects of NOM source and hydrodynamic conditions. Water Research, 41, 3823–3832.CrossRef Huang, H., Lee, N., Young, T., Gary, A., Lozier, J. C., & Jacangelo, J. G. (2007). Natural organic matter fouling of low-pressure, hollow-fiber membranes: Effects of NOM source and hydrodynamic conditions. Water Research, 41, 3823–3832.CrossRef
go back to reference Huang, X., Leal, M., & Li, Q. (2008). Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes. Water Research, 42, 1142–1150.CrossRef Huang, X., Leal, M., & Li, Q. (2008). Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes. Water Research, 42, 1142–1150.CrossRef
go back to reference Jacoby, W. A., Nimlos, M. R., & Blake, D. M. (1994). Products, intermediates, mass balances, and reaction pathways for the oxidation of trichloroethylene in air via heterogeneous photocatalysis. Environmental Science and Technology, 28, 1661–1668.CrossRef Jacoby, W. A., Nimlos, M. R., & Blake, D. M. (1994). Products, intermediates, mass balances, and reaction pathways for the oxidation of trichloroethylene in air via heterogeneous photocatalysis. Environmental Science and Technology, 28, 1661–1668.CrossRef
go back to reference Jiang, J., Oberdörster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11, 77–89.CrossRef Jiang, J., Oberdörster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11, 77–89.CrossRef
go back to reference Kim, M.-J., Choo, K.-H., & Park, H.-S. (2010). Photocatalytic degradation of seawater organic matter using a submerged membrane reactor. Journal of Photochemistry and Photobiology A: Chemistry, 216, 215–220.CrossRef Kim, M.-J., Choo, K.-H., & Park, H.-S. (2010). Photocatalytic degradation of seawater organic matter using a submerged membrane reactor. Journal of Photochemistry and Photobiology A: Chemistry, 216, 215–220.CrossRef
go back to reference Lee, S.-A., Choo, K.-H., Lee, C.-H., Lee, H.-I., Hyeon, T., Choi, W., et al. (2001). Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment. Industrial and Engineering Chemistry Research, 40, 1712–1719.CrossRef Lee, S.-A., Choo, K.-H., Lee, C.-H., Lee, H.-I., Hyeon, T., Choi, W., et al. (2001). Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment. Industrial and Engineering Chemistry Research, 40, 1712–1719.CrossRef
go back to reference Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water treatment. Chemical Reviews, 93, 671–698.CrossRef Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water treatment. Chemical Reviews, 93, 671–698.CrossRef
go back to reference Li, X. Z., Fan, C. M., & Sun, Y. P. (2002). Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensions by increasing cation strength. Chemosphere, 48, 453–460.CrossRef Li, X. Z., Fan, C. M., & Sun, Y. P. (2002). Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensions by increasing cation strength. Chemosphere, 48, 453–460.CrossRef
go back to reference Li, Y., Li, X., Li, J., & Yin, J. (2006). Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research, 40, 1119–1126.CrossRef Li, Y., Li, X., Li, J., & Yin, J. (2006). Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research, 40, 1119–1126.CrossRef
go back to reference Martínez, F., López-Muñoz, M. J., Aguado, J., Melero, J. A., Arsuaga, J., Sotto, A., et al. (2013). Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants. Water Research, 47, 5647–5658.CrossRef Martínez, F., López-Muñoz, M. J., Aguado, J., Melero, J. A., Arsuaga, J., Sotto, A., et al. (2013). Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants. Water Research, 47, 5647–5658.CrossRef
go back to reference Meng, Y., Huang, X., Yang, Q., Qian, Y., Kubota, N., & Fukunaga, S. (2005). Treatment of polluted river water with a photocatalytic slurry reactor using low-pressure mercury lamps coupled with a membrane. Desalination, 181, 121–133.CrossRef Meng, Y., Huang, X., Yang, Q., Qian, Y., Kubota, N., & Fukunaga, S. (2005). Treatment of polluted river water with a photocatalytic slurry reactor using low-pressure mercury lamps coupled with a membrane. Desalination, 181, 121–133.CrossRef
go back to reference Molinari, R., Pirillo, F., Falco, M., Loddo, V., & Palmisano, L. (2004). Photocatalytic degradation of dyes by using a membrane reactor. Chemical Engineering and Processing: Process Intensification, 43, 1103–1114.CrossRef Molinari, R., Pirillo, F., Falco, M., Loddo, V., & Palmisano, L. (2004). Photocatalytic degradation of dyes by using a membrane reactor. Chemical Engineering and Processing: Process Intensification, 43, 1103–1114.CrossRef
go back to reference Molinari, R., Pirillo, F., Loddo, V., & Palmisano, L. (2006). Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO < sub > 2 </sub > and a nanofiltration membrane reactor. Catalysis Today, 118, 205–213.CrossRef Molinari, R., Pirillo, F., Loddo, V., & Palmisano, L. (2006). Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO < sub > 2 </sub > and a nanofiltration membrane reactor. Catalysis Today, 118, 205–213.CrossRef
go back to reference Mozia, S. (2010). Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Separation and Purification Technology, 73, 71–91.CrossRef Mozia, S. (2010). Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Separation and Purification Technology, 73, 71–91.CrossRef
go back to reference Mozia, S., Morawski, A. W., Toyoda, M., & Tsumura, T. (2009). Effect of process parameters on photodegradation of acid yellow 36 in a hybrid photocatalysis–membrane distillation system. Chemical Engineering Journal, 150, 152–159.CrossRef Mozia, S., Morawski, A. W., Toyoda, M., & Tsumura, T. (2009). Effect of process parameters on photodegradation of acid yellow 36 in a hybrid photocatalysis–membrane distillation system. Chemical Engineering Journal, 150, 152–159.CrossRef
go back to reference Muthukumaran, S., & Baskaran, K. (2013). Comparison of the performance of ceramic microfiltration and ultrafiltration membranes in the reclamation and reuse of secondary wastewater. Desalination and Water Treatment, 1–8. Muthukumaran, S., & Baskaran, K. (2013). Comparison of the performance of ceramic microfiltration and ultrafiltration membranes in the reclamation and reuse of secondary wastewater. Desalination and Water Treatment, 1–8.
go back to reference Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279, 383–389.CrossRef Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279, 383–389.CrossRef
go back to reference Muthukumaran, S., Song, L., Zhu, B., Darli, M., Jin-Yuan, C., Stephen, G., et al. (2014). UV/TiO2 photocatalytic oxidation of recalcitrant organic matter: Effect of salinity and pH. Water Science and Technology, 70, 437–443.CrossRef Muthukumaran, S., Song, L., Zhu, B., Darli, M., Jin-Yuan, C., Stephen, G., et al. (2014). UV/TiO2 photocatalytic oxidation of recalcitrant organic matter: Effect of salinity and pH. Water Science and Technology, 70, 437–443.CrossRef
go back to reference Parra, S., Stanca, S. E., Guasaquillo, I., & Thampi, K. R. (2004). Photocatalytic degradation of atrazine using suspended and supported TiO2. Applied Catalysis B: Environmental, 51, 107–116.CrossRef Parra, S., Stanca, S. E., Guasaquillo, I., & Thampi, K. R. (2004). Photocatalytic degradation of atrazine using suspended and supported TiO2. Applied Catalysis B: Environmental, 51, 107–116.CrossRef
go back to reference Patsios, S., Sarasidis, V., & Karabelas, A. (2013). A hybrid photocatalysis–ultrafiltration continuous process for humic acids degradation. Separation and Purification Technology, 104, 333–341.CrossRef Patsios, S., Sarasidis, V., & Karabelas, A. (2013). A hybrid photocatalysis–ultrafiltration continuous process for humic acids degradation. Separation and Purification Technology, 104, 333–341.CrossRef
go back to reference Reutergådh, L. B., & Iangphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and us photocatalysis. Chemosphere, 35, 585–596.CrossRef Reutergådh, L. B., & Iangphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and us photocatalysis. Chemosphere, 35, 585–596.CrossRef
go back to reference Saratale, R. G., Noh, H. S., Song, J. Y., & Kim, D. S. (2014). Influence of parameters on the photocatalytic degradation of phenolic contaminants in wastewater using TiO2/UV system. Journal of Environmental Science and Health, Part A, 49, 1542–1551.CrossRef Saratale, R. G., Noh, H. S., Song, J. Y., & Kim, D. S. (2014). Influence of parameters on the photocatalytic degradation of phenolic contaminants in wastewater using TiO2/UV system. Journal of Environmental Science and Health, Part A, 49, 1542–1551.CrossRef
go back to reference Song, L., Zhu, B., Jegatheesan, V., Stephen, G., Mikel, D., & Muthukumaran, S. (2016a). A hybrid photocatalysis and ceramic membrane filtration process for humic acid degradation: Effect of pore size and transmembrane pressure. Desalination and Water Treatment (Under Review). Song, L., Zhu, B., Jegatheesan, V., Stephen, G., Mikel, D., & Muthukumaran, S. (2016a). A hybrid photocatalysis and ceramic membrane filtration process for humic acid degradation: Effect of pore size and transmembrane pressure. Desalination and Water Treatment (Under Review).
go back to reference Song, L., Zhu, B., Stephen, G., Mikel, D., & Muthukumaran, S. (2016b). Hybrid Processes combining photocatalysis and ceramic membrane filtration for degradation of humic acids in salinewater. Membranes, 6. Song, L., Zhu, B., Stephen, G., Mikel, D., & Muthukumaran, S. (2016b). Hybrid Processes combining photocatalysis and ceramic membrane filtration for degradation of humic acids in salinewater. Membranes, 6.
go back to reference Spadaro, J. T., Isabelle, L., & Renganathan, V. (1994). Hydroxyl radical mediated degradation of azo dyes: Evidence for benzene generation. Environmental Science and Technology, 28, 1389–1394.CrossRef Spadaro, J. T., Isabelle, L., & Renganathan, V. (1994). Hydroxyl radical mediated degradation of azo dyes: Evidence for benzene generation. Environmental Science and Technology, 28, 1389–1394.CrossRef
go back to reference Susanto, H., & Ulbricht, M. (2008). High-performance thin-layer hydrogel composite membranes for ultrafiltration of natural organic matter. Water Research, 42, 2827–2835.CrossRef Susanto, H., & Ulbricht, M. (2008). High-performance thin-layer hydrogel composite membranes for ultrafiltration of natural organic matter. Water Research, 42, 2827–2835.CrossRef
go back to reference Tay, J., Chen, D., & Sun, D. (2001). Removal of color substances using photocatalytic oxidation for membrane filtration processes. Water Science and Technology, 43, 319–325.CrossRef Tay, J., Chen, D., & Sun, D. (2001). Removal of color substances using photocatalytic oxidation for membrane filtration processes. Water Science and Technology, 43, 319–325.CrossRef
go back to reference Toepfer, B., Gora, A., & Li Puma, G. (2006). Photocatalytic oxidation of multicomponent solutions of herbicides: Reaction kinetics analysis with explicit photon absorption effects. Applied Catalysis, B: Environmental, 68, 171–180.CrossRef Toepfer, B., Gora, A., & Li Puma, G. (2006). Photocatalytic oxidation of multicomponent solutions of herbicides: Reaction kinetics analysis with explicit photon absorption effects. Applied Catalysis, B: Environmental, 68, 171–180.CrossRef
go back to reference Van Der Bruggen, B., Mänttäri, M., & Nyström, M. (2008). Drawbacks of applying nanofiltration and how to avoid them: A review. Separation and Purification Technology, 63, 251–263.CrossRef Van Der Bruggen, B., Mänttäri, M., & Nyström, M. (2008). Drawbacks of applying nanofiltration and how to avoid them: A review. Separation and Purification Technology, 63, 251–263.CrossRef
go back to reference Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., & Weber, J.-V. (2002). Photocatalytic decomposition of humic acids on TiO2: Part I: Discussion of adsorption and mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 152, 267–273.CrossRef Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., & Weber, J.-V. (2002). Photocatalytic decomposition of humic acids on TiO2: Part I: Discussion of adsorption and mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 152, 267–273.CrossRef
go back to reference Yamazaki-nishida, S., Fu, X., Anderson, M. A., & Hori, K. (1996). Chlorinated byproducts from the photoassisted catalytic oxidation of trichloroethylene and tetrachloroethylene in the gas phase using porous TiO2 pellets. Journal of Photochemistry and Photobiology A: Chemistry, 97, 175–179.CrossRef Yamazaki-nishida, S., Fu, X., Anderson, M. A., & Hori, K. (1996). Chlorinated byproducts from the photoassisted catalytic oxidation of trichloroethylene and tetrachloroethylene in the gas phase using porous TiO2 pellets. Journal of Photochemistry and Photobiology A: Chemistry, 97, 175–179.CrossRef
go back to reference Zangeneh, H., Zinatizadeh, A. A. L., Habibi, M., Akia, M., & Hasnain ISA, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26, 1–36.CrossRef Zangeneh, H., Zinatizadeh, A. A. L., Habibi, M., Akia, M., & Hasnain ISA, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. Journal of Industrial and Engineering Chemistry, 26, 1–36.CrossRef
go back to reference Zhao, L., Bram, M., Buchkremer, H. P., Stöver, D., & Li, Z. (2004). Preparation of TiO2 composite microfiltration membranes by the wet powder spraying method. Journal of Membrane Science, 244, 107–115.CrossRef Zhao, L., Bram, M., Buchkremer, H. P., Stöver, D., & Li, Z. (2004). Preparation of TiO2 composite microfiltration membranes by the wet powder spraying method. Journal of Membrane Science, 244, 107–115.CrossRef
go back to reference Zhao, Y., Zhong, J., Li, H., Xu, N., & Shi, J. (2002). Fouling and regeneration of ceramic microfiltration membranes in processing acid wastewater containing fine TiO2 particles. Journal of Membrane Science, 208, 331–341.CrossRef Zhao, Y., Zhong, J., Li, H., Xu, N., & Shi, J. (2002). Fouling and regeneration of ceramic microfiltration membranes in processing acid wastewater containing fine TiO2 particles. Journal of Membrane Science, 208, 331–341.CrossRef
go back to reference Zularisam, A. W., Ismail, A. F., & Salim, R. (2006). Behaviours of natural organic matter in membrane filtration for surface water treatment—A review. Desalination, 194, 211–231.CrossRef Zularisam, A. W., Ismail, A. F., & Salim, R. (2006). Behaviours of natural organic matter in membrane filtration for surface water treatment—A review. Desalination, 194, 211–231.CrossRef
Metadata
Title
Effect of Hybrid Photocatalysis and Ceramic Membrane Filtration Process for Humic Acid Degradation
Authors
Lili Song
Bo Zhu
Veeriah Jegatheesan
Stephen R. Gray
Mikel C. Duke
Shobha Muthukumaran
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-75199-3_6