Skip to main content
Top
Published in:

28-09-2022

Effect of Hydrogen Gas on Mechanical Properties of Pipe Metal of Main Gas Pipelines

Authors: S. Yu. Nastich, V. A. Lopatkin

Published in: Metallurgist | Issue 5-6/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, literature data on the effect of hydrogen gas and methane-hydrogen mixtures at high pressure on the metal of gas pipelines are reviewed. The properties of low-alloy ferritic steels are known to be affected due to hydrogen embrittlement: ductility and fracture toughness decrease along with the increasing rate of fatigue crack propagation (da/dN); metal deformation curve transforms with failure mode changing to quasi-spalling. The conventional mechanical tests for evaluating hydrogen embrittlement are considered. The chemical composition and microstructure of pipe steels having strength grades from X52 (K50) to X100 (K80), characteristic of investigated materials, are shown. On the basis of published data, the effect of the hydrogen content in the methane-hydrogen mixture (from 0 to 100%), the pressure of the gas medium (up to 30 MPa), and durability on the plasticity (RRA, %; δ, displacement) and fracture toughness (KIH) of metal was assessed. General influence patterns associated with the structural type and characteristics of pipe metal on its properties when subjected to hydrogen are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
ASME B31.12-2019 – Hydrogen piping and pipelines. ASME Code for Pressure Piping, B31 An American National Standard (Copyright ASME International) / ASME, 2019. 272 p.
 
Literature
1.
go back to reference B. A. Kolachev, Hydrogen Embrittlement of Metals [In Russian], Moscow, Metallurgiya, (1985). B. A. Kolachev, Hydrogen Embrittlement of Metals [In Russian], Moscow, Metallurgiya, (1985).
2.
go back to reference P. V. Gel’d and R. A. Ryabov, Hydrogen in Metals and Alloys [In Russian], Moscow, Metallurgiya, (1974). P. V. Gel’d and R. A. Ryabov, Hydrogen in Metals and Alloys [In Russian], Moscow, Metallurgiya, (1974).
3.
go back to reference Q. Liu and A. Atrens, “A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels,” De Gruyter. Corrosion Rev., No. 31 (3–6), 85–103 (2013). Q. Liu and A. Atrens, “A critical review of the influence of hydrogen on the mechanical properties of medium-strength steels,” De Gruyter. Corrosion Rev., No. 31 (3–6), 85–103 (2013).
4.
go back to reference X. Li, X. Ma, J. Zhang, et al., “Review of hydrogen embrittlement in metals: hydrogen difusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention,” Acta Metall. Sin. Engl., No. 33. 759–773 (2020). X. Li, X. Ma, J. Zhang, et al., “Review of hydrogen embrittlement in metals: hydrogen difusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention,” Acta Metall. Sin. Engl., No. 33. 759–773 (2020).
5.
go back to reference O. E. Aksyutin, A. G. Ishkov, K. V. Romanov, et al., “Potential of methane-hydrogen fuel in the transition to a low-carbon economy,” Gas. Prom., No. 1/750, Special Issue, 82–85 (2017). O. E. Aksyutin, A. G. Ishkov, K. V. Romanov, et al., “Potential of methane-hydrogen fuel in the transition to a low-carbon economy,” Gas. Prom., No. 1/750, Special Issue, 82–85 (2017).
6.
go back to reference H. Brauer, M. Simm, E. Wanzenberg, M. Henel, and O. J. Huising, “Energy transition with hydrogen pipes: Mannesmann “H2ready” and the changeover of existing gasunie natural gas networks,” PTJ, No Special 01, 16–29 (2020). H. Brauer, M. Simm, E. Wanzenberg, M. Henel, and O. J. Huising, “Energy transition with hydrogen pipes: Mannesmann “H2ready” and the changeover of existing gasunie natural gas networks,” PTJ, No Special 01, 16–29 (2020).
7.
go back to reference N. E. Nanninga, Y. S. Levy, E. S. Drexler, R. T. Condon, A. E. Stevenson, and A. J. Slifka, “Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments,” Corros. Sci., 59, 1–9 (2012).CrossRef N. E. Nanninga, Y. S. Levy, E. S. Drexler, R. T. Condon, A. E. Stevenson, and A. J. Slifka, “Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments,” Corros. Sci., 59, 1–9 (2012).CrossRef
8.
go back to reference E. Wanzenberg, M. Henel, H. Brauer, E. Tamaske, H. Neumann, A. Großmann, and K. Wackermann, “Research Project “H2-PIMS”: Transporting Hydrogen Safely in the Natural Gas Network,” Pipelinetechnik [in German], No. 06, 84 – 93 (2019). E. Wanzenberg, M. Henel, H. Brauer, E. Tamaske, H. Neumann, A. Großmann, and K. Wackermann, “Research Project “H2-PIMS”: Transporting Hydrogen Safely in the Natural Gas Network,” Pipelinetechnik [in German], No. 06, 84 – 93 (2019).
9.
go back to reference C. Engel, U. Marewski, G. Schnotz, H. Silcher, M. Steiner, and S. Zickler, “Testing mechanical fracture of materials for gas pipelines to evaluate hydrogen compatibility: preliminary results,” Pipelinetechnik [in German], No. 10–11, 34–41 (2020). C. Engel, U. Marewski, G. Schnotz, H. Silcher, M. Steiner, and S. Zickler, “Testing mechanical fracture of materials for gas pipelines to evaluate hydrogen compatibility: preliminary results,” Pipelinetechnik [in German], No. 10–11, 34–41 (2020).
10.
go back to reference D. Zhou, T. Li, D. Huang, Y. Wu, Z. Huang, W. Xiao, Q. Wang, and X. Wang, “The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel,” Int. J. Hydrog., 46 (10), 7402–7414 (2021).CrossRef D. Zhou, T. Li, D. Huang, Y. Wu, Z. Huang, W. Xiao, Q. Wang, and X. Wang, “The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel,” Int. J. Hydrog., 46 (10), 7402–7414 (2021).CrossRef
11.
go back to reference H. P. Kyriakopoulou, P. Karmiris-Obratański, A. S. Tazedakis, N. M. Daniolos., E. C. Dourdounis, D. E. Manolakos, and D. Pantelis, “Investigation of hydrogen embrittlement susceptibility and fracture toughness drop after in situ hydrogen cathodic charging for an X65 pipeline steel,” Micromachines, No 11 (4), 430 (2020). H. P. Kyriakopoulou, P. Karmiris-Obratański, A. S. Tazedakis, N. M. Daniolos., E. C. Dourdounis, D. E. Manolakos, and D. Pantelis, “Investigation of hydrogen embrittlement susceptibility and fracture toughness drop after in situ hydrogen cathodic charging for an X65 pipeline steel,” Micromachines, No 11 (4), 430 (2020).
12.
go back to reference A. S. Tazedakis, N. Voudouris, E. Dourdounis, G. Mannucci, L. F. Di Vito, and A. Fonzo, “Qualification of high-strength linepipes for hydrogen transportation based on ASME B31.12 Code,” PTJ, No. 1. 43–50 (2021). A. S. Tazedakis, N. Voudouris, E. Dourdounis, G. Mannucci, L. F. Di Vito, and A. Fonzo, “Qualification of high-strength linepipes for hydrogen transportation based on ASME B31.12 Code,” PTJ, No. 1. 43–50 (2021).
13.
go back to reference D. Stalheim, T. Boggess, C. SanMarchi, S. Jansto, B. Somerday, G. Muralidharan, and P. Sofronis, “Microstructure and mechanical property performance of commercial grade api pipeline steels in high pressure gaseous hydrogen,” in: Proc. of IPC 2010 8th Intern. Pipeline Conf. Calgary, Canada (2010), Paper IPC2010-31301. D. Stalheim, T. Boggess, C. SanMarchi, S. Jansto, B. Somerday, G. Muralidharan, and P. Sofronis, “Microstructure and mechanical property performance of commercial grade api pipeline steels in high pressure gaseous hydrogen,” in: Proc. of IPC 2010 8th Intern. Pipeline Conf. Calgary, Canada (2010), Paper IPC2010-31301.
14.
go back to reference H. Brauer, M. Simm, E. Wanzenberg, and M. Henel, “Transportation of gaseous hydrogen via pipelines,” bbr. [In German], No. 11, 36–41 (2018). H. Brauer, M. Simm, E. Wanzenberg, and M. Henel, “Transportation of gaseous hydrogen via pipelines,” bbr. [In German], No. 11, 36–41 (2018).
15.
go back to reference B. Meng, C. Gu, L. Zhang, et. al., “Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures,” Int. J. Hydrog., No. 42, 7404–7412 (2017). B. Meng, C. Gu, L. Zhang, et. al., “Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures,” Int. J. Hydrog., No. 42, 7404–7412 (2017).
16.
go back to reference J. A. Ronevich, E. Ju. Song, B. P. Somerday, and C. W. San Marchi, “Hydrogen-assisted fracture resistance of pipeline welds in gaseous hydrogen,” Int. J. Hydrog., 46 (10), 7601–7614 (2021).CrossRef J. A. Ronevich, E. Ju. Song, B. P. Somerday, and C. W. San Marchi, “Hydrogen-assisted fracture resistance of pipeline welds in gaseous hydrogen,” Int. J. Hydrog., 46 (10), 7601–7614 (2021).CrossRef
17.
go back to reference I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, and G. Odemer, “Hydrogen embrittlement susceptibility of a high strength steel X80,” Mater. Sci. Eng. A, No. 527, 7252–7260 (2010). I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, and G. Odemer, “Hydrogen embrittlement susceptibility of a high strength steel X80,” Mater. Sci. Eng. A, No. 527, 7252–7260 (2010).
18.
go back to reference A. J. Slifka, E. S. Drexler, R. L. Amaro, L. E. Hayden, D. G. Stalh eim, D. S. Lauria, and N. W. Hrabe, “Fatigue measurement of pipeline steels for the application of transporting gaseous hydrogen,” J. Press. Vessel Technol. Trans. ASME, No. 140 (1), 011407-1–011407-12 (2018). A. J. Slifka, E. S. Drexler, R. L. Amaro, L. E. Hayden, D. G. Stalh eim, D. S. Lauria, and N. W. Hrabe, “Fatigue measurement of pipeline steels for the application of transporting gaseous hydrogen,” J. Press. Vessel Technol. Trans. ASME, No. 140 (1), 011407-1–011407-12 (2018).
19.
go back to reference R. L. Amaro, R. M. White, C. P. Looney, E. S. Drexler, and A. J. Slitka, “Development of a model for hydrogen-assisted fatigue crack growth in pipeline steel,” J. Press. Vessel Technol. Trans. ASME, No 140 (2), 021403-1–021403-13 (2018). R. L. Amaro, R. M. White, C. P. Looney, E. S. Drexler, and A. J. Slitka, “Development of a model for hydrogen-assisted fatigue crack growth in pipeline steel,” J. Press. Vessel Technol. Trans. ASME, No 140 (2), 021403-1–021403-13 (2018).
20.
go back to reference A. J. Haq, K. Muzaka, D. P. Dunne, A. Calka, and E. V. Pereloma, “Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels,” Int. J. Hydrog., No. 38 (5), 2544–2556 (2013). A. J. Haq, K. Muzaka, D. P. Dunne, A. Calka, and E. V. Pereloma, “Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels,” Int. J. Hydrog., No. 38 (5), 2544–2556 (2013).
21.
go back to reference E. Fallahmohammadi, F. Bolzoni, G. Fumagalli, G. Re, G. Benassi, and L. Lazzari, “Hydrogen diffusion into three metallurgical microstructures of a C-Mn X65 and low alloy F22 sour service steel pipelines,” Int. J. Hydrog., 39 (25), 13300–13313 (2014).CrossRef E. Fallahmohammadi, F. Bolzoni, G. Fumagalli, G. Re, G. Benassi, and L. Lazzari, “Hydrogen diffusion into three metallurgical microstructures of a C-Mn X65 and low alloy F22 sour service steel pipelines,” Int. J. Hydrog., 39 (25), 13300–13313 (2014).CrossRef
22.
go back to reference J. G. Arenas-Salcedo, J. G. Godínez-Salcedo, J. L. González-Velázquez, and J. M. Medina-Huerta, “Effect of carbon content and microstructure on the diffusion of hydrogen in low carbon steels,” Int. J. Electrochem. Sci., No. 15, 11606– 11622 (2020). J. G. Arenas-Salcedo, J. G. Godínez-Salcedo, J. L. González-Velázquez, and J. M. Medina-Huerta, “Effect of carbon content and microstructure on the diffusion of hydrogen in low carbon steels,” Int. J. Electrochem. Sci., No. 15, 11606– 11622 (2020).
Metadata
Title
Effect of Hydrogen Gas on Mechanical Properties of Pipe Metal of Main Gas Pipelines
Authors
S. Yu. Nastich
V. A. Lopatkin
Publication date
28-09-2022
Publisher
Springer US
Published in
Metallurgist / Issue 5-6/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01369-0

Other articles of this Issue 5-6/2022

Metallurgist 5-6/2022 Go to the issue

Premium Partners