Skip to main content
Top
Published in:

03-04-2024

Effect of incident angle of electromagnetic radiation on the electronic and thermoelectric properties of POPGraphene nanoribbons

Authors: Mobina Ardyani, Seyed Ahmad Ketabi, Reza Kalami

Published in: Journal of Computational Electronics | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we theoretically investigate the influence of electromagnetic radiation on the electronic and thermoelectric properties of Penta-Octa-Penta Graphene (POPGraphene) nanoribbons. Specifically, we study the effects of varying the incident angle (0–90 degrees) of radiation on the density of states, transmission function, Seebeck coefficient, and electronic figure of merit (ZTe) of the nanoribbons. Our results demonstrate that the electronic properties are highly dependent on radiation conditions due to their influence on electron transport. We find that the density of states and transmission function exhibit distinct radiation angle-dependent behaviors that highlight the role of the radiation's electric field orientation. Importantly, the ZTe shows significant modulation with the incident angle, achieving optimized values up to 0.275. These findings provide insights into controlling the electronic and thermoelectric properties of POPGraphene nanoribbons using electromagnetic radiation. Our work underscores opportunities for developing Graphene-based nanophotonic devices with enhanced performance through all-optical means. The demonstrated tunability via irradiation paves the way for potential applications such as optical switches, sensors, and next-generation optoelectronics using POPGraphene nanoribbons.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khan, K., Tareen, A.K., Aslam, M., Wang, R., Zhang, Y., Mahmood, A., Ouyang, Z., Zhang, H., Guo, Z.: Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8, 387–440 (2020)CrossRef Khan, K., Tareen, A.K., Aslam, M., Wang, R., Zhang, Y., Mahmood, A., Ouyang, Z., Zhang, H., Guo, Z.: Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8, 387–440 (2020)CrossRef
2.
go back to reference Bhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., Xiao, D., Son, Y., Strano, M.S., Cooper, V.R.: Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015)CrossRef Bhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., Xiao, D., Son, Y., Strano, M.S., Cooper, V.R.: Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015)CrossRef
3.
go back to reference Sangwan, V.K., Hersam, M.C.: Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 69, 299–325 (2018)CrossRef Sangwan, V.K., Hersam, M.C.: Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 69, 299–325 (2018)CrossRef
4.
go back to reference Ponraj, J.S., Xu, Z.-Q., Dhanabalan, S.C., Mu, H., Wang, Y., Yuan, J., Li, P., Thakur, S., Ashrafi, M., Mccoubrey, K.: Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnol. 27, 462001 (2016)CrossRef Ponraj, J.S., Xu, Z.-Q., Dhanabalan, S.C., Mu, H., Wang, Y., Yuan, J., Li, P., Thakur, S., Ashrafi, M., Mccoubrey, K.: Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnol. 27, 462001 (2016)CrossRef
5.
go back to reference Ashok Kumar, S.S., Bashir, S., Ramesh, K., Ramesh, S.: A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future. J. Mater. Sci. 57, 12236–12278 (2022)CrossRef Ashok Kumar, S.S., Bashir, S., Ramesh, K., Ramesh, S.: A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future. J. Mater. Sci. 57, 12236–12278 (2022)CrossRef
6.
go back to reference Kong, X., Liu, Q., Zhang, C., Peng, Z., Chen, Q.: Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 46, 2127–2157 (2017)CrossRef Kong, X., Liu, Q., Zhang, C., Peng, Z., Chen, Q.: Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 46, 2127–2157 (2017)CrossRef
7.
go back to reference Z. Zhen, H. Zhu, Structure and properties of graphene, Graphene, (Elsevier2018), p. 1–12. Z. Zhen, H. Zhu, Structure and properties of graphene, Graphene, (Elsevier2018), p. 1–12.
8.
go back to reference Ghuge, A.D., Shirode, A.R., Kadam, V.J.: Graphene: a comprehensive review. Curr. Drug Targets 18, 724–733 (2017)CrossRef Ghuge, A.D., Shirode, A.R., Kadam, V.J.: Graphene: a comprehensive review. Curr. Drug Targets 18, 724–733 (2017)CrossRef
9.
go back to reference Chen, J.-H., Autès, G., Alem, N., Gargiulo, F., Gautam, A., Linck, M., Kisielowski, C., Yazyev, O., Louie, S., Zettl, A.: Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering. Phys. Rev. B Condens. Matter 89(2014), 121407 (2014)CrossRef Chen, J.-H., Autès, G., Alem, N., Gargiulo, F., Gautam, A., Linck, M., Kisielowski, C., Yazyev, O., Louie, S., Zettl, A.: Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering. Phys. Rev. B Condens. Matter 89(2014), 121407 (2014)CrossRef
10.
go back to reference Wang, S., Yang, B., Chen, H., Ruckenstein, E.: Popgraphene: a new 2D planar carbon allotrope composed of 5–8–5 carbon rings for high-performance lithium-ion battery anodes from bottom-up programming. J. Mater. Chem. A 6, 6815–6821 (2018)CrossRef Wang, S., Yang, B., Chen, H., Ruckenstein, E.: Popgraphene: a new 2D planar carbon allotrope composed of 5–8–5 carbon rings for high-performance lithium-ion battery anodes from bottom-up programming. J. Mater. Chem. A 6, 6815–6821 (2018)CrossRef
11.
go back to reference Rajkamal, A., Thapa, R.: Carbon allotropes as anode material for lithium-ion batteries. Adv. Mater. Technol. 4, 1900307 (2019)CrossRef Rajkamal, A., Thapa, R.: Carbon allotropes as anode material for lithium-ion batteries. Adv. Mater. Technol. 4, 1900307 (2019)CrossRef
12.
go back to reference Álvarez-Zapatero, P., Herrero, A., Lebon, A., Gallego, L., Vega, A.: Ab initio study of lithium decoration of popgraphene and hydrogen storage capacity of the hybrid nanostructure. Int. J. Hydrog. Energy 46, 15724–15737 (2021)CrossRef Álvarez-Zapatero, P., Herrero, A., Lebon, A., Gallego, L., Vega, A.: Ab initio study of lithium decoration of popgraphene and hydrogen storage capacity of the hybrid nanostructure. Int. J. Hydrog. Energy 46, 15724–15737 (2021)CrossRef
13.
go back to reference Brandão, W., Aguiar, A., Ribeiro, L., Galvão, D., De Sousa, J.: On the Mechanical properties of popgraphene-based nanotubes: a reactive molecular dynamics study. ChemPhysChem 22, 701–707 (2021)CrossRef Brandão, W., Aguiar, A., Ribeiro, L., Galvão, D., De Sousa, J.: On the Mechanical properties of popgraphene-based nanotubes: a reactive molecular dynamics study. ChemPhysChem 22, 701–707 (2021)CrossRef
14.
go back to reference Meng, F., Ni, M., Chen, F., Song, J., Wei, D.: Nanoscale fracture of defective popgraphene monolayers. Phys. Chem. Chem. Phys. 21, 1242–1253 (2019)CrossRef Meng, F., Ni, M., Chen, F., Song, J., Wei, D.: Nanoscale fracture of defective popgraphene monolayers. Phys. Chem. Chem. Phys. 21, 1242–1253 (2019)CrossRef
15.
go back to reference Lin, J., Yu, T., Han, F., Yang, G.: Computational predictions of two-dimensional anode materials of metal-ion batteries. Wiley Interdiscip. Rev. Comput. Mol. Sci. 10, e1473 (2020)CrossRef Lin, J., Yu, T., Han, F., Yang, G.: Computational predictions of two-dimensional anode materials of metal-ion batteries. Wiley Interdiscip. Rev. Comput. Mol. Sci. 10, e1473 (2020)CrossRef
16.
go back to reference Mota, E.A.V., Moura-Moreira, M., Siqueira, M.R.S., da Silva, C.A.B., Del Nero, J.: Stability, edge passivation effect, electronic and transport properties of POPGraphene nanoribbons. Phys. Chem. Chem. Phys. 23, 2483–2490 (2021)CrossRef Mota, E.A.V., Moura-Moreira, M., Siqueira, M.R.S., da Silva, C.A.B., Del Nero, J.: Stability, edge passivation effect, electronic and transport properties of POPGraphene nanoribbons. Phys. Chem. Chem. Phys. 23, 2483–2490 (2021)CrossRef
17.
go back to reference Pereira Junior, M.L., Ribeiro Junior, L.A., Brandão, W.H., Aguiar, A.L., Galvão, D.S., De Sousa, J.M.: Temperature effects on the fracture dynamics and elastic properties of popgraphene membranes. ChemPhysChem 21, 1918–1924 (2020)CrossRef Pereira Junior, M.L., Ribeiro Junior, L.A., Brandão, W.H., Aguiar, A.L., Galvão, D.S., De Sousa, J.M.: Temperature effects on the fracture dynamics and elastic properties of popgraphene membranes. ChemPhysChem 21, 1918–1924 (2020)CrossRef
18.
go back to reference Popov, M.N., Dengg, T., Gehringer, D., Holec, D.: Adsorption of H2 on penta-octa-penta graphene: grand canonical monte carlo study. C 6(2), 20 (2020) Popov, M.N., Dengg, T., Gehringer, D., Holec, D.: Adsorption of H2 on penta-octa-penta graphene: grand canonical monte carlo study. C 6(2), 20 (2020)
19.
go back to reference Wang, S., Yang, B., Chen, H., Ruckenstein, E.: Correction: Popgraphene: a new 2D planar carbon allotrope composed of 5–8–5 carbon rings for high-performance lithium-ion battery anodes from bottom-up programming. J. Mater. Chem. A 6, 6687–6687 (2018)CrossRef Wang, S., Yang, B., Chen, H., Ruckenstein, E.: Correction: Popgraphene: a new 2D planar carbon allotrope composed of 5–8–5 carbon rings for high-performance lithium-ion battery anodes from bottom-up programming. J. Mater. Chem. A 6, 6687–6687 (2018)CrossRef
20.
go back to reference Peng, Z., Chen, X., Fan, Y., Srolovitz, D.J., Lei, D.: Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. LIGHT-SCI APPL 9(1), 190 (2020)CrossRef Peng, Z., Chen, X., Fan, Y., Srolovitz, D.J., Lei, D.: Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. LIGHT-SCI APPL 9(1), 190 (2020)CrossRef
21.
go back to reference Maiti, U.N., Lee, W.J., Lee, J.M., Oh, Y., Kim, J.Y., Kim, J.E., Kim, S.O.: 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 26(1), 40–67 (2014)CrossRef Maiti, U.N., Lee, W.J., Lee, J.M., Oh, Y., Kim, J.Y., Kim, J.E., Kim, S.O.: 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 26(1), 40–67 (2014)CrossRef
22.
go back to reference Sattar, A., Moazzam, U., Bashir, A.I., Reza, A., Latif, H., Usman, A., Nasir, A.: Proposal of graphene band-gap enhancement via heterostructure of graphene with boron nitride in vertical stacking scheme. Nanotechnol. 32(22), 225705 (2021)CrossRef Sattar, A., Moazzam, U., Bashir, A.I., Reza, A., Latif, H., Usman, A., Nasir, A.: Proposal of graphene band-gap enhancement via heterostructure of graphene with boron nitride in vertical stacking scheme. Nanotechnol. 32(22), 225705 (2021)CrossRef
23.
go back to reference Luo, H., Yu, G.: Preparation, bandgap engineering, and performance control of graphene nanoribbons. Chem. Mater. 34, 3588–3615 (2022)CrossRef Luo, H., Yu, G.: Preparation, bandgap engineering, and performance control of graphene nanoribbons. Chem. Mater. 34, 3588–3615 (2022)CrossRef
24.
go back to reference Kusuma, J., Balakrishna, R.G., Patil, S., Jyothi, M., Chandan, H., Shwetharani, R.: Exploration of graphene oxide nanoribbons as excellent electron conducting network for third generation solar cells. Sol. Energy Mater. Sol. Cells 183, 211–219 (2018)CrossRef Kusuma, J., Balakrishna, R.G., Patil, S., Jyothi, M., Chandan, H., Shwetharani, R.: Exploration of graphene oxide nanoribbons as excellent electron conducting network for third generation solar cells. Sol. Energy Mater. Sol. Cells 183, 211–219 (2018)CrossRef
25.
go back to reference Guo, J., Xiang, R., Cheng, T., Maruyama, S., Li, Y.: One-dimensional van der Waals heterostructures: a perspective. ACS Nanosci. Au 2, 3–11 (2021)CrossRef Guo, J., Xiang, R., Cheng, T., Maruyama, S., Li, Y.: One-dimensional van der Waals heterostructures: a perspective. ACS Nanosci. Au 2, 3–11 (2021)CrossRef
26.
go back to reference Mota, E.A.V., da Silva, C.A.B., Del Nero, J.: Electronic and transport properties of new carbon nanoribbons with 5–8–5 carbon rings: tuning stability by the edge shape effect. Phys. Chem. Chem. Phys.. Phys. 24(48), 29966–29976 (2022)CrossRef Mota, E.A.V., da Silva, C.A.B., Del Nero, J.: Electronic and transport properties of new carbon nanoribbons with 5–8–5 carbon rings: tuning stability by the edge shape effect. Phys. Chem. Chem. Phys.. Phys. 24(48), 29966–29976 (2022)CrossRef
27.
go back to reference Massetti, M., Jiao, F., Ferguson, A.J., Zhao, D., Wijeratne, K., Würger, A., Blackburn, J.L., Crispin, X., Fabiano, S.: Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 121, 12465–12547 (2021)CrossRef Massetti, M., Jiao, F., Ferguson, A.J., Zhao, D., Wijeratne, K., Würger, A., Blackburn, J.L., Crispin, X., Fabiano, S.: Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 121, 12465–12547 (2021)CrossRef
28.
go back to reference Channegowda, M., Mulla, R., Nagaraj, Y., Lokesh, S., Nayak, S., Mudhulu, S., Rastogi, C.K., Dunnill, C.W., Rajan, H.K., Khosla, A.: Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity. ACS Appl. Energy Mater. 5, 7913–7943 (2022)CrossRef Channegowda, M., Mulla, R., Nagaraj, Y., Lokesh, S., Nayak, S., Mudhulu, S., Rastogi, C.K., Dunnill, C.W., Rajan, H.K., Khosla, A.: Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity. ACS Appl. Energy Mater. 5, 7913–7943 (2022)CrossRef
29.
go back to reference Jia, Y., Jiang, Q., Sun, H., Liu, P., Hu, D., Pei, Y., Liu, W., Crispin, X., Fabiano, S., Ma, Y.: Wearable thermoelectric materials and devices for self-powered electronic systems. Adv. Mater. 33, 2102990 (2021)CrossRef Jia, Y., Jiang, Q., Sun, H., Liu, P., Hu, D., Pei, Y., Liu, W., Crispin, X., Fabiano, S., Ma, Y.: Wearable thermoelectric materials and devices for self-powered electronic systems. Adv. Mater. 33, 2102990 (2021)CrossRef
30.
go back to reference Jia, P.Z., Mo, Z.X., Deng, L.Q., Zhang, Y., Yu, X., Zeng, Y.J., Xie, Z.X.: Local resonance mechanism for enhancing the thermoelectric performance of PBCF-graphene nanoribbons. Diam. Relat. Mater. 141, 110609 (2024)CrossRef Jia, P.Z., Mo, Z.X., Deng, L.Q., Zhang, Y., Yu, X., Zeng, Y.J., Xie, Z.X.: Local resonance mechanism for enhancing the thermoelectric performance of PBCF-graphene nanoribbons. Diam. Relat. Mater. 141, 110609 (2024)CrossRef
31.
go back to reference Jia, P.Z., Xie, Z.X., Deng, Y.X., Zhang, Y., Tang, L.M., Zhou, W.X., Chen, K.Q.: High thermoelectric performance induced by strong anharmonic effects in monolayer (PbX) 2 (X= S, Se, Te). Appl. Phys. Lett. 121(4), 043901 (2022)CrossRef Jia, P.Z., Xie, Z.X., Deng, Y.X., Zhang, Y., Tang, L.M., Zhou, W.X., Chen, K.Q.: High thermoelectric performance induced by strong anharmonic effects in monolayer (PbX) 2 (X= S, Se, Te). Appl. Phys. Lett. 121(4), 043901 (2022)CrossRef
32.
go back to reference Chen, X.K., Zhang, E.M., Wu, D., Chen, K.Q.: Strain-induced medium-temperature thermoelectric performance of Cu 4 Ti Se 4: the role of four-phonon scattering. Phys. Rev. Appl. 19(4), 044052 (2023)CrossRef Chen, X.K., Zhang, E.M., Wu, D., Chen, K.Q.: Strain-induced medium-temperature thermoelectric performance of Cu 4 Ti Se 4: the role of four-phonon scattering. Phys. Rev. Appl. 19(4), 044052 (2023)CrossRef
33.
go back to reference Xie, Z.X., Chen, X.K., Yu, X., Deng, Y.X., Zhang, Y., Zhou, W.X., Jia, P.Z.: Intrinsic thermoelectric properties in biphenylene nanoribbons and effect of lattice defects. Comput. Mater. Sci. 220, 112041 (2023)CrossRef Xie, Z.X., Chen, X.K., Yu, X., Deng, Y.X., Zhang, Y., Zhou, W.X., Jia, P.Z.: Intrinsic thermoelectric properties in biphenylene nanoribbons and effect of lattice defects. Comput. Mater. Sci. 220, 112041 (2023)CrossRef
34.
go back to reference Saraswat, V., Jacobberger, R.M., Arnold, M.S.: Materials science challenges to graphene nanoribbon electronics. ACS Nano 15, 3674–3708 (2021)CrossRef Saraswat, V., Jacobberger, R.M., Arnold, M.S.: Materials science challenges to graphene nanoribbon electronics. ACS Nano 15, 3674–3708 (2021)CrossRef
35.
go back to reference Hao, Z., Zhang, H., Ruan, Z., Yan, C., Lu, J., Cai, J.: Tuning the electronic properties of atomically precise graphene nanoribbons by bottom-up fabrication. ChemNanoMat 6, 493–515 (2020)CrossRef Hao, Z., Zhang, H., Ruan, Z., Yan, C., Lu, J., Cai, J.: Tuning the electronic properties of atomically precise graphene nanoribbons by bottom-up fabrication. ChemNanoMat 6, 493–515 (2020)CrossRef
36.
go back to reference Johnson, A.P., Sabu, C., Swamy, N.K., Anto, A., Gangadharappa, H., Pramod, K.: Graphene nanoribbon: an emerging and efficient flat molecular platform for advanced biosensing. Biosens. Bioelectron. 184, 113245 (2021)CrossRef Johnson, A.P., Sabu, C., Swamy, N.K., Anto, A., Gangadharappa, H., Pramod, K.: Graphene nanoribbon: an emerging and efficient flat molecular platform for advanced biosensing. Biosens. Bioelectron. 184, 113245 (2021)CrossRef
37.
go back to reference O. Braun, Thermoelectric Effects in Nanoscale Devices, (University of asel, 2021). O. Braun, Thermoelectric Effects in Nanoscale Devices, (University of asel, 2021).
38.
go back to reference Haskins, J., Kınacı, A., Sevik, C., Sevinçli, H., Cuniberti, G., Çağın, T.: Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 5, 3779–3787 (2011)CrossRef Haskins, J., Kınacı, A., Sevik, C., Sevinçli, H., Cuniberti, G., Çağın, T.: Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 5, 3779–3787 (2011)CrossRef
39.
go back to reference Tan, S.-H., Tang, L.-M., Xie, Z.-X., Pan, C.-N., Chen, K.-Q.: Effect of pentagon–heptagon defect on thermal transport properties in graphene nanoribbons. Carbon 65, 181–186 (2013)CrossRef Tan, S.-H., Tang, L.-M., Xie, Z.-X., Pan, C.-N., Chen, K.-Q.: Effect of pentagon–heptagon defect on thermal transport properties in graphene nanoribbons. Carbon 65, 181–186 (2013)CrossRef
40.
go back to reference Yang, B., Li, D., Yang, H., Wang, J., Yang, P.: Thermal conductivity enhancement of defective graphene nanoribbons. Int. Commun. Heat Mass Transfer 117, 104735 (2020)CrossRef Yang, B., Li, D., Yang, H., Wang, J., Yang, P.: Thermal conductivity enhancement of defective graphene nanoribbons. Int. Commun. Heat Mass Transfer 117, 104735 (2020)CrossRef
41.
go back to reference Almeida, P., Martins, G.: Thermoelectric transport properties of armchair graphene nanoribbon heterostructures. J. Condens. Matter Phys. 34, 335302 (2022)CrossRef Almeida, P., Martins, G.: Thermoelectric transport properties of armchair graphene nanoribbon heterostructures. J. Condens. Matter Phys. 34, 335302 (2022)CrossRef
42.
go back to reference Chen, X.-K., Zeng, Y.-J., Chen, K.-Q.: Thermal transport in two-dimensional heterostructures. Front. Mater. Sci. 7, 578791 (2020)CrossRef Chen, X.-K., Zeng, Y.-J., Chen, K.-Q.: Thermal transport in two-dimensional heterostructures. Front. Mater. Sci. 7, 578791 (2020)CrossRef
43.
go back to reference Jiang, T., Xiong, R., Huang, T., Li, M., Zhang, Y., Zhou, H.: Thermal conductivity of the popgraphene monolayer tailored by strain and defect: a molecular dynamics study. Diam. Relat. Mater. 130, 109409 (2022)CrossRef Jiang, T., Xiong, R., Huang, T., Li, M., Zhang, Y., Zhou, H.: Thermal conductivity of the popgraphene monolayer tailored by strain and defect: a molecular dynamics study. Diam. Relat. Mater. 130, 109409 (2022)CrossRef
44.
go back to reference Volokitin, A.I., Persson, B.N.: Electromagnetic Fluctuations at the Nanoscale. Springer, Theory and Applications (2017)CrossRef Volokitin, A.I., Persson, B.N.: Electromagnetic Fluctuations at the Nanoscale. Springer, Theory and Applications (2017)CrossRef
45.
go back to reference Zhu, J., Goddard, L.L.: All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. Nanoscale Adv. 1, 4615–4643 (2019)CrossRef Zhu, J., Goddard, L.L.: All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. Nanoscale Adv. 1, 4615–4643 (2019)CrossRef
46.
go back to reference Joulain, K., Mulet, J.-P., Marquier, F., Carminati, R., Greffet, J.-J.: Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2005)CrossRef Joulain, K., Mulet, J.-P., Marquier, F., Carminati, R., Greffet, J.-J.: Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2005)CrossRef
47.
go back to reference Sun, J., Wang, W., Yue, Q.: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Mater. 9, 231 (2016)CrossRef Sun, J., Wang, W., Yue, Q.: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Mater. 9, 231 (2016)CrossRef
48.
go back to reference Baranov, D.G., Wersall, M., Cuadra, J., Antosiewicz, T.J., Shegai, T.: Novel nanostructures and materials for strong light–matter interactions. ACS Photonics 5, 24–42 (2018)CrossRef Baranov, D.G., Wersall, M., Cuadra, J., Antosiewicz, T.J., Shegai, T.: Novel nanostructures and materials for strong light–matter interactions. ACS Photonics 5, 24–42 (2018)CrossRef
49.
go back to reference Rivera, N., Kaminer, I.: Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2(10), 538–561 (2020)CrossRef Rivera, N., Kaminer, I.: Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2(10), 538–561 (2020)CrossRef
50.
go back to reference Ketabi, S.: Effect of radiation on the electronic transport through polyacetylene-based junctions. Phys. B: Condens. Matter 481, 165–171 (2016)CrossRef Ketabi, S.: Effect of radiation on the electronic transport through polyacetylene-based junctions. Phys. B: Condens. Matter 481, 165–171 (2016)CrossRef
51.
go back to reference Bludov, Y.V., Peres, N.M., Vasilevskiy, M.I.: Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. J. Opt. 15, 114004 (2013)CrossRef Bludov, Y.V., Peres, N.M., Vasilevskiy, M.I.: Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. J. Opt. 15, 114004 (2013)CrossRef
52.
go back to reference Arief, I., Biswas, S., Bose, S.: Graphene analogues as emerging materials for screening electromagnetic radiations. Nano-Struct. Nano-Objects 11, 94–101 (2017)CrossRef Arief, I., Biswas, S., Bose, S.: Graphene analogues as emerging materials for screening electromagnetic radiations. Nano-Struct. Nano-Objects 11, 94–101 (2017)CrossRef
53.
go back to reference Elliott, B.: The great polarization: Understanding to the historical shift away from social action within Evangelicalism. J. Jaffray 19, 152–165 (2021) Elliott, B.: The great polarization: Understanding to the historical shift away from social action within Evangelicalism. J. Jaffray 19, 152–165 (2021)
54.
go back to reference Foulkes, W.M.C., Haydock, R.: Tight-binding models and density-functional theory. Phys. Rev. B Condens. Matter 39, 12520 (1989)CrossRef Foulkes, W.M.C., Haydock, R.: Tight-binding models and density-functional theory. Phys. Rev. B Condens. Matter 39, 12520 (1989)CrossRef
55.
go back to reference Peierls, R.: Zur theorie des diamagnetismus von leitungselektronen. Z. Med. Phys. 80, 763–791 (1933) Peierls, R.: Zur theorie des diamagnetismus von leitungselektronen. Z. Med. Phys. 80, 763–791 (1933)
56.
57.
58.
go back to reference L. Eyges, The classical electromagnetic field, (Courier Corporation, 2012). L. Eyges, The classical electromagnetic field, (Courier Corporation, 2012).
59.
go back to reference Huang, Y.-M., Peng, C.-Y., Miao, W.-C., Chiang, H., Lee, T.-Y., Chang, Y.-H., Singh, K.J., Iida, Z.D., Horng, R.-H., Chow, C.-W.: High-efficiency InGaN red micro-LEDs for visible light communication. Photonics Res. 10, 1978–1986 (2022)CrossRef Huang, Y.-M., Peng, C.-Y., Miao, W.-C., Chiang, H., Lee, T.-Y., Chang, Y.-H., Singh, K.J., Iida, Z.D., Horng, R.-H., Chow, C.-W.: High-efficiency InGaN red micro-LEDs for visible light communication. Photonics Res. 10, 1978–1986 (2022)CrossRef
60.
go back to reference Datta, S.: Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge (1997) Datta, S.: Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge (1997)
61.
go back to reference C.P. Enz, A course on many-body theory applied to solid-state physics, (World Scientific, 1992). C.P. Enz, A course on many-body theory applied to solid-state physics, (World Scientific, 1992).
62.
go back to reference d’Amato, J.L., Pastawski, H.M.: Conductance of a disordered linear chain including inelastic scattering events. Phys. Rev. B 41, 7411 (1990)CrossRef d’Amato, J.L., Pastawski, H.M.: Conductance of a disordered linear chain including inelastic scattering events. Phys. Rev. B 41, 7411 (1990)CrossRef
63.
go back to reference Mandal, S., Sarkar, P.: Computational exploration of ultralow lattice thermal conductivity and high figure of merit in p-type bulk RbX2Sb (X= K, Na). ACS Appl. Energy Mater. 6, 939–949 (2023)CrossRef Mandal, S., Sarkar, P.: Computational exploration of ultralow lattice thermal conductivity and high figure of merit in p-type bulk RbX2Sb (X= K, Na). ACS Appl. Energy Mater. 6, 939–949 (2023)CrossRef
64.
go back to reference Fang, W., Wei, H., Xiao, X., Chen, Y., Kuang, K., Li, M., He, Y.: XTlO (X= K, Rb, Cs): Novel 2D semiconductors with high electron mobilities, ultra-low lattice thermal conductivities and high thermoelectric figures of merit at room temperature. Appl. Surf. Sci. 599, 153924 (2022)CrossRef Fang, W., Wei, H., Xiao, X., Chen, Y., Kuang, K., Li, M., He, Y.: XTlO (X= K, Rb, Cs): Novel 2D semiconductors with high electron mobilities, ultra-low lattice thermal conductivities and high thermoelectric figures of merit at room temperature. Appl. Surf. Sci. 599, 153924 (2022)CrossRef
65.
go back to reference Bürkle, M., Asai, Y.: How to probe the limits of the Wiedemann-Franz law at nanoscale. Nano Lett. 18(11), 7358–7361 (2018)CrossRef Bürkle, M., Asai, Y.: How to probe the limits of the Wiedemann-Franz law at nanoscale. Nano Lett. 18(11), 7358–7361 (2018)CrossRef
66.
go back to reference Toriyama, M.Y., Ganose, A.M., Dylla, M., Anand, S., Park, J., Brod, M.K., Munro, J.M., Persson, K.A., Jain, A., Snyder, G.J.: How to analyse a density of states. Mater. Today Electron. 1, 100002 (2022)CrossRef Toriyama, M.Y., Ganose, A.M., Dylla, M., Anand, S., Park, J., Brod, M.K., Munro, J.M., Persson, K.A., Jain, A., Snyder, G.J.: How to analyse a density of states. Mater. Today Electron. 1, 100002 (2022)CrossRef
67.
go back to reference Srivastava, S., Mohapatra, Y.N.: Defect density of states in natural and synthetic MoS2 multilayer flakes. J. Phys. D Appl. Phys. 55, 345101 (2022)CrossRef Srivastava, S., Mohapatra, Y.N.: Defect density of states in natural and synthetic MoS2 multilayer flakes. J. Phys. D Appl. Phys. 55, 345101 (2022)CrossRef
68.
go back to reference Ren, Y., Cheng, F., Zhou, X., Chang, K., Zhou, G.: Tunable mechanical, electronic and magnetic properties of monolayer C3N nanoribbons by external fields. Carbon 143, 14–20 (2019)CrossRef Ren, Y., Cheng, F., Zhou, X., Chang, K., Zhou, G.: Tunable mechanical, electronic and magnetic properties of monolayer C3N nanoribbons by external fields. Carbon 143, 14–20 (2019)CrossRef
69.
go back to reference M. A. Johar, R. A. Afzal, A. A. Alazba, U. Manzoor, Photocatalysis and bandgap engineering using ZnO nanocomposites, Adv. Mater. Sci. Eng. 2015 (2015).‏ M. A. Johar, R. A. Afzal, A. A. Alazba, U. Manzoor, Photocatalysis and bandgap engineering using ZnO nanocomposites, Adv. Mater. Sci. Eng. 2015 (2015).‏
70.
go back to reference Do, T.N., Gumbs, G., Huang, D., Hoi, B.D., Shih, P.H.: Role played by edge-defects in the optical properties of armchair graphene nanoribbons. Nanomater. 11(12), 3229 (2021)CrossRef Do, T.N., Gumbs, G., Huang, D., Hoi, B.D., Shih, P.H.: Role played by edge-defects in the optical properties of armchair graphene nanoribbons. Nanomater. 11(12), 3229 (2021)CrossRef
71.
go back to reference Zare, R., Badehian, H.A.: Electronic and optical properties of boron nitride nanoribbons exploiting DFT. Opt. Quantum. Electron. 55(5), 406 (2023)CrossRef Zare, R., Badehian, H.A.: Electronic and optical properties of boron nitride nanoribbons exploiting DFT. Opt. Quantum. Electron. 55(5), 406 (2023)CrossRef
72.
go back to reference Liao, W., Zhou, G., Xi, F.: Optical properties for armchair-edge graphene nanoribbons. J. Appl. Phys. 104(12), 126105–126105 (2008)CrossRef Liao, W., Zhou, G., Xi, F.: Optical properties for armchair-edge graphene nanoribbons. J. Appl. Phys. 104(12), 126105–126105 (2008)CrossRef
73.
go back to reference Zamani, S., Farghadan, R.: Electric field induced enhancement of photovoltaic effects in graphene nanoribbons. Phys. Rev. B Condens. Matter 99(23), 235418 (2019)CrossRef Zamani, S., Farghadan, R.: Electric field induced enhancement of photovoltaic effects in graphene nanoribbons. Phys. Rev. B Condens. Matter 99(23), 235418 (2019)CrossRef
74.
go back to reference Meena, R., Kumar, M., Gupta, R.: Investigation of dominant degradation mode in field-aged photovoltaic modules using novel differential current-voltage analysis approach. Prog Photovolt 30, 1312–1324 (2022)CrossRef Meena, R., Kumar, M., Gupta, R.: Investigation of dominant degradation mode in field-aged photovoltaic modules using novel differential current-voltage analysis approach. Prog Photovolt 30, 1312–1324 (2022)CrossRef
75.
go back to reference Daugalas, T., Bukauskas, V., Lukša, A., Nargelienė, V., Šetkus, A.: Dependence of electrical charge transport on the voltage applied across metal–graphene–metal stack under fixed compressing force. Coat. 13, 1522 (2023)CrossRef Daugalas, T., Bukauskas, V., Lukša, A., Nargelienė, V., Šetkus, A.: Dependence of electrical charge transport on the voltage applied across metal–graphene–metal stack under fixed compressing force. Coat. 13, 1522 (2023)CrossRef
76.
go back to reference Tombros, N., Veligura, A., Junesch, J., Guimarães, M.H., Vera-Marun, I.J., Jonkman, H.T., Van Wees, B.J.: Quantized conductance of a suspended graphene nanoconstriction. Nat. Phys. 7, 697–700 (2011)CrossRef Tombros, N., Veligura, A., Junesch, J., Guimarães, M.H., Vera-Marun, I.J., Jonkman, H.T., Van Wees, B.J.: Quantized conductance of a suspended graphene nanoconstriction. Nat. Phys. 7, 697–700 (2011)CrossRef
77.
78.
go back to reference Xiong, R., Masoumi, S., Pakdel, A.: An automatic apparatus for simultaneous measurement of seebeck coefficient and electrical resistivity. Energies 16, 6319 (2023)CrossRef Xiong, R., Masoumi, S., Pakdel, A.: An automatic apparatus for simultaneous measurement of seebeck coefficient and electrical resistivity. Energies 16, 6319 (2023)CrossRef
79.
go back to reference He, Y., Zhang, Q., Cheng, H., Liu, Y., Shu, Y., Geng, Y., Sun, K.: Role of ions in hydrogels with an ionic seebeck coefficient of 52.9 mV K–1. J. Phys. Chem. Lett. 13(20), 4621–4627 (2022)CrossRef He, Y., Zhang, Q., Cheng, H., Liu, Y., Shu, Y., Geng, Y., Sun, K.: Role of ions in hydrogels with an ionic seebeck coefficient of 52.9 mV K–1. J. Phys. Chem. Lett. 13(20), 4621–4627 (2022)CrossRef
80.
go back to reference Song, D., Chi, C., An, M., Du, Y., Ma, W., Wang, K., Zhang, X.: Ionic Seebeck coefficient and figure of merit in ionic thermoelectric materials. Cell Rep. Phys. Sci. 3, 101018 (2022)CrossRef Song, D., Chi, C., An, M., Du, Y., Ma, W., Wang, K., Zhang, X.: Ionic Seebeck coefficient and figure of merit in ionic thermoelectric materials. Cell Rep. Phys. Sci. 3, 101018 (2022)CrossRef
81.
go back to reference Sadeghi, H., Sangtarash, S., Lambert, C.J.: Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons. Beilstein J. Nanotechnol. 6, 1176 (2015)CrossRef Sadeghi, H., Sangtarash, S., Lambert, C.J.: Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons. Beilstein J. Nanotechnol. 6, 1176 (2015)CrossRef
82.
go back to reference Sadeghi, H., Sangtarash, S., Lambert, C.J.: Enhanced thermoelectric efficiency of porous silicene nanoribbons. Sci. Rep. 6, 1176 (2015) Sadeghi, H., Sangtarash, S., Lambert, C.J.: Enhanced thermoelectric efficiency of porous silicene nanoribbons. Sci. Rep. 6, 1176 (2015)
83.
go back to reference Darmawan, A., Suprayoga, E., Nugraha, A.R., AlShaikhi, A.A.: Thermoelectric properties of two-dimensional materials with combination of linear and nonlinear band structures. Mater. Today Commun. 33, 104596 (2022)CrossRef Darmawan, A., Suprayoga, E., Nugraha, A.R., AlShaikhi, A.A.: Thermoelectric properties of two-dimensional materials with combination of linear and nonlinear band structures. Mater. Today Commun. 33, 104596 (2022)CrossRef
84.
go back to reference Kalami, R., Ketabi, S.: Role of linear defects on the electronic, transport, and thermoelectric properties of armchair edge silicene nanoribbons. J. Electron. Mater. 52, 4644–4654 (2023)CrossRef Kalami, R., Ketabi, S.: Role of linear defects on the electronic, transport, and thermoelectric properties of armchair edge silicene nanoribbons. J. Electron. Mater. 52, 4644–4654 (2023)CrossRef
85.
go back to reference Kalami, R., Ketabi, S.: Electronic and thermoelectric properties of armchair-edge silicene nanoribbons: role of quantum antidot arrays. J. Electron. Mater. 52, 6566–6577 (2023)CrossRef Kalami, R., Ketabi, S.: Electronic and thermoelectric properties of armchair-edge silicene nanoribbons: role of quantum antidot arrays. J. Electron. Mater. 52, 6566–6577 (2023)CrossRef
86.
go back to reference Jaafreh, R., Seong, K.Y., Kim, J.-G., Hamad, K.: A deep learning perspective into the figure-of-merit of thermoelectric materials. Mater. Lett. 319, 132299 (2022)CrossRef Jaafreh, R., Seong, K.Y., Kim, J.-G., Hamad, K.: A deep learning perspective into the figure-of-merit of thermoelectric materials. Mater. Lett. 319, 132299 (2022)CrossRef
87.
go back to reference Murphy, P., Mukerjee, S., Moore, J.: Optimal thermoelectric figure of merit of a molecular junction. Phys. Rev. B Condens. Matter 78, 161406 (2008)CrossRef Murphy, P., Mukerjee, S., Moore, J.: Optimal thermoelectric figure of merit of a molecular junction. Phys. Rev. B Condens. Matter 78, 161406 (2008)CrossRef
88.
go back to reference Limelette, P.: Thermopower, figure of merit and Fermi integrals. Sci. Rep. 11, 24323 (2021)CrossRef Limelette, P.: Thermopower, figure of merit and Fermi integrals. Sci. Rep. 11, 24323 (2021)CrossRef
Metadata
Title
Effect of incident angle of electromagnetic radiation on the electronic and thermoelectric properties of POPGraphene nanoribbons
Authors
Mobina Ardyani
Seyed Ahmad Ketabi
Reza Kalami
Publication date
03-04-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02158-5