Skip to main content
Top
Published in: Cognitive Neurodynamics 4/2020

17-03-2020 | Research Article

Effect of interpopulation spike-timing-dependent plasticity on synchronized rhythms in neuronal networks with inhibitory and excitatory populations

Authors: Sang-Yoon Kim, Woochang Lim

Published in: Cognitive Neurodynamics | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider a two-population network consisting of both inhibitory (I) interneurons and excitatory (E) pyramidal cells. This I–E neuronal network has adaptive dynamic I to E and E to I interpopulation synaptic strengths, governed by interpopulation spike-timing-dependent plasticity (STDP). In previous works without STDPs, fast sparsely synchronized rhythms, related to diverse cognitive functions, were found to appear in a range of noise intensity D for static synaptic strengths. Here, by varying D, we investigate the effect of interpopulation STDPs on fast sparsely synchronized rhythms that emerge in both the I- and the E-populations. Depending on values of D, long-term potentiation (LTP) and long-term depression (LTD) for population-averaged values of saturated interpopulation synaptic strengths are found to occur. Then, the degree of fast sparse synchronization varies due to effects of LTP and LTD. In a broad region of intermediate D, the degree of good synchronization (with higher synchronization degree) becomes decreased, while in a region of large D, the degree of bad synchronization (with lower synchronization degree) gets increased. Consequently, in each I- or E-population, the synchronization degree becomes nearly the same in a wide range of D (including both the intermediate and the large D regions). This kind of “equalization effect” is found to occur via cooperative interplay between the average occupation and pacing degrees of spikes (i.e., the average fraction of firing neurons and the average degree of phase coherence between spikes in each synchronized stripe of spikes in the raster plot of spikes) in fast sparsely synchronized rhythms. Finally, emergences of LTP and LTD of interpopulation synaptic strengths (leading to occurrence of equalization effect) are intensively investigated via a microscopic method based on the distributions of time delays between the pre- and the post-synaptic spike times.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183PubMed Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183PubMed
go back to reference Bair W, Koch C, Newsome W, Britten K (1994) Power spectrum analysis of bursting cells in area MT in the behaving monkey. J Neurosci 14:2870–2892PubMedPubMedCentral Bair W, Koch C, Newsome W, Britten K (1994) Power spectrum analysis of bursting cells in area MT in the behaving monkey. J Neurosci 14:2870–2892PubMedPubMedCentral
go back to reference Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523PubMed Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523PubMed
go back to reference Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278–281PubMed Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278–281PubMed
go back to reference Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMedPubMedCentral Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMedPubMedCentral
go back to reference Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139–166PubMed Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139–166PubMed
go back to reference Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48PubMedPubMedCentral Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48PubMedPubMedCentral
go back to reference Bol T, de Vaan M, van de Rijt A (2018) The Matthew effect in science funding. Proc Natl Acad Sci USA 115:4887–4890PubMed Bol T, de Vaan M, van de Rijt A (2018) The Matthew effect in science funding. Proc Natl Acad Sci USA 115:4887–4890PubMed
go back to reference Borges RR, Borges FS, Batista AM, Lameu EL, Viana RL, Iarosz KC, Caldas IL, Sanjuán MAF (2016) Effects of spike timing-dependent plasticity on the synchronization in a random Hodgkin–Huxley neuronal network. Commun Nonlinear Sci Numer Simul 34:12–22 Borges RR, Borges FS, Batista AM, Lameu EL, Viana RL, Iarosz KC, Caldas IL, Sanjuán MAF (2016) Effects of spike timing-dependent plasticity on the synchronization in a random Hodgkin–Huxley neuronal network. Commun Nonlinear Sci Numer Simul 34:12–22
go back to reference Borges RR, Borges FS, Lameu EL, Batista AM, Iarosz KC, Caldas IL, Antonopoulos CG, Batista MS (2017a) Spike timing-dependent plasticity induces non-trivial topology in the brain. Neural Netw 88:58–64PubMed Borges RR, Borges FS, Lameu EL, Batista AM, Iarosz KC, Caldas IL, Antonopoulos CG, Batista MS (2017a) Spike timing-dependent plasticity induces non-trivial topology in the brain. Neural Netw 88:58–64PubMed
go back to reference Borges RR, Borges FS, Lameu EE, Protachevicz PR, Iarosz KC, Caldas IL, Viana RL, Macau EEL, Baptista MS, Grebogi C, Baptista AM (2017b) Synaptic plasticity and spike synchronisation in neuronal networks. Braz J Phys 47:678–688 Borges RR, Borges FS, Lameu EE, Protachevicz PR, Iarosz KC, Caldas IL, Viana RL, Macau EEL, Baptista MS, Grebogi C, Baptista AM (2017b) Synaptic plasticity and spike synchronisation in neuronal networks. Braz J Phys 47:678–688
go back to reference Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsáki G (1995) Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15:47–60PubMedPubMedCentral Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsáki G (1995) Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15:47–60PubMedPubMedCentral
go back to reference Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8:183–208PubMed Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8:183–208PubMed
go back to reference Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11:1621–1671PubMed Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11:1621–1671PubMed
go back to reference Brunel N, Hakim V (2008) Sparsely synchronized neuronal oscillations. Chaos 18:015113PubMed Brunel N, Hakim V (2008) Sparsely synchronized neuronal oscillations. Chaos 18:015113PubMed
go back to reference Brunel N, Hansel D (2006) How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput 18:1066–1110PubMed Brunel N, Hansel D (2006) How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput 18:1066–1110PubMed
go back to reference Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415–430PubMed Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415–430PubMed
go back to reference Buhl EH, Tamas G, Fisahn A (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 513:117–126PubMedPubMedCentral Buhl EH, Tamas G, Fisahn A (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 513:117–126PubMedPubMedCentral
go back to reference Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMed Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMed
go back to reference Burns BD, Webb AC (1976) The spontaneous activity of neurones in the cat’s cerebral cortex. Proc R Soc Lond Ser B 194:211–233 Burns BD, Webb AC (1976) The spontaneous activity of neurones in the cat’s cerebral cortex. Proc R Soc Lond Ser B 194:211–233
go back to reference Buzsáki G (2006) Rhythms of the brain. Oxford University Press, New York Buzsáki G (2006) Rhythms of the brain. Oxford University Press, New York
go back to reference Buzsáki G, Geisler C, Henze DA, Wang XJ (2004) Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci 27:186–193PubMed Buzsáki G, Geisler C, Henze DA, Wang XJ (2004) Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci 27:186–193PubMed
go back to reference Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46PubMed Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46PubMed
go back to reference Cardin JA (2012) Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity. J Physiol (Paris) 106:104–111 Cardin JA (2012) Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity. J Physiol (Paris) 106:104–111
go back to reference Castilo PE, Chiu CQ, Carroll RC (2011) Long-term synaptic plasticity at inhibitory synapses. Curr Opin Neurobiol 21:328–338 Castilo PE, Chiu CQ, Carroll RC (2011) Long-term synaptic plasticity at inhibitory synapses. Curr Opin Neurobiol 21:328–338
go back to reference Chklovskii DB, Mel BW, Svoboda K (2004) Cortical rewiring and information storage. Nature 431:782–788PubMed Chklovskii DB, Mel BW, Svoboda K (2004) Cortical rewiring and information storage. Nature 431:782–788PubMed
go back to reference Colgin LL, Denninger T, Fyhn M, Hafting M, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357PubMed Colgin LL, Denninger T, Fyhn M, Hafting M, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357PubMed
go back to reference Compte A, Reig R, Descalzo VF, Harvey MA, Puccini GD, Sanchez-Vives MV (2008) Spontaneous high-frequency (10–80 Hz) oscillations during up states in the cerebral cortex in vitro. J Neurosci 28:13828–13844PubMedPubMedCentral Compte A, Reig R, Descalzo VF, Harvey MA, Puccini GD, Sanchez-Vives MV (2008) Spontaneous high-frequency (10–80 Hz) oscillations during up states in the cerebral cortex in vitro. J Neurosci 28:13828–13844PubMedPubMedCentral
go back to reference Csicsvari J, Hirase H, Czurko A, Buzsáki G (1998) Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 21:179–189PubMed Csicsvari J, Hirase H, Czurko A, Buzsáki G (1998) Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 21:179–189PubMed
go back to reference Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsáki G (1999) Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 19:274–287PubMedPubMedCentral Csicsvari J, Hirase H, Czurko A, Mamiya A, Buzsáki G (1999) Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 19:274–287PubMedPubMedCentral
go back to reference Csicsvari J, Jamieson B, Wise K, Buzsáki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322PubMed Csicsvari J, Jamieson B, Wise K, Buzsáki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322PubMed
go back to reference Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30PubMed Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30PubMed
go back to reference Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86:1033–1048PubMed Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86:1033–1048PubMed
go back to reference Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge
go back to reference Debanne D, Gähwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507(1):237–247PubMedPubMedCentral Debanne D, Gähwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507(1):237–247PubMedPubMedCentral
go back to reference Deisseroth K, Feng G, Majewska AK, Miesenbóck G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386PubMedPubMedCentral Deisseroth K, Feng G, Majewska AK, Miesenbóck G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386PubMedPubMedCentral
go back to reference Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531–1547PubMed Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531–1547PubMed
go back to reference Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608PubMedPubMedCentral Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608PubMedPubMedCentral
go back to reference Douglas RJ, Martin KAC, Whitteridge D (1991) An intracellular analysis of the visual responses of neurones in cat visual cortex. J Physiol 440:659–696PubMedPubMedCentral Douglas RJ, Martin KAC, Whitteridge D (1991) An intracellular analysis of the visual responses of neurones in cat visual cortex. J Physiol 440:659–696PubMedPubMedCentral
go back to reference Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck H (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol Cybern 60:121–130PubMed Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck H (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol Cybern 60:121–130PubMed
go back to reference Eeckman FH, Freeman WJ (1990) Correlations between unit firing and EEG in the rat olfactory system. Brain Res 528:238–244PubMed Eeckman FH, Freeman WJ (1990) Correlations between unit firing and EEG in the rat olfactory system. Brain Res 528:238–244PubMed
go back to reference Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2:1098–1105PubMed Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2:1098–1105PubMed
go back to reference Fellous J, Sejnowski TJ (2000) Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz) and gamma (35–70 Hz) bands. Hippocampus 10:187–197PubMed Fellous J, Sejnowski TJ (2000) Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz) and gamma (35–70 Hz) bands. Hippocampus 10:187–197PubMed
go back to reference Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189PubMed Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189PubMed
go back to reference Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563PubMed Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563PubMed
go back to reference Gaiarsa JL, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25:564–570PubMed Gaiarsa JL, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25:564–570PubMed
go back to reference Garcia-Rill E (2015) Waking and the reticular activating system in health and disease. Elsevier, London Garcia-Rill E (2015) Waking and the reticular activating system in health and disease. Elsevier, London
go back to reference Geisler C, Brunel N, Wang XJ (2005) Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J Neurophysiol 94:4344–4361PubMed Geisler C, Brunel N, Wang XJ (2005) Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J Neurophysiol 94:4344–4361PubMed
go back to reference Gerstner W, Kistler WM, Naud R, Paninski L (2014) Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, Cambridge Gerstner W, Kistler WM, Naud R, Paninski L (2014) Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, Cambridge
go back to reference Golomb D, Rinzel J (1994) Clustering in globally coupled inhibitory neurons. Physica D 72:259–282 Golomb D, Rinzel J (1994) Clustering in globally coupled inhibitory neurons. Physica D 72:259–282
go back to reference Gray CM, Engel A, König P, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature eependence. Eur J Neurosci 2:607–619PubMed Gray CM, Engel A, König P, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature eependence. Eur J Neurosci 2:607–619PubMed
go back to reference Guare J (1990) Six degrees of separation: a play. Random House, New York Guare J (1990) Six degrees of separation: a play. Random House, New York
go back to reference Haas JS, Nowotny T, Abarbanel HDI (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96:3305–3313PubMed Haas JS, Nowotny T, Abarbanel HDI (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96:3305–3313PubMed
go back to reference Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick D (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435PubMed Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick D (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435PubMed
go back to reference Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York
go back to reference Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medullated axon. J Physiol 107:165–181PubMedPubMedCentral Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medullated axon. J Physiol 107:165–181PubMedPubMedCentral
go back to reference Hong DG, Kim SY, Lim W (2011) Effect of sparse random connectivity on the stochastic spiking coherence of inhibitory subthreshold neurons. J Korean Phys Soc 59:2840–2846 Hong DG, Kim SY, Lim W (2011) Effect of sparse random connectivity on the stochastic spiking coherence of inhibitory subthreshold neurons. J Korean Phys Soc 59:2840–2846
go back to reference Izhikevich EM (2000) Neural excitability, spiking and bursting. Int J Bifurc Chaos 10:1171–1266 Izhikevich EM (2000) Neural excitability, spiking and bursting. Int J Bifurc Chaos 10:1171–1266
go back to reference Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572PubMed Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572PubMed
go back to reference Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070PubMed Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070PubMed
go back to reference Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge
go back to reference Izhikevich EM (2010) Hybrid spiking models. Pilos Trans R Soc A 368:5061–5070 Izhikevich EM (2010) Hybrid spiking models. Pilos Trans R Soc A 368:5061–5070
go back to reference Kashiwadani H, Sasaki YF, Uchida N, Mori K (1999) Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J Neurophysiol 82:1786–1792PubMed Kashiwadani H, Sasaki YF, Uchida N, Mori K (1999) Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J Neurophysiol 82:1786–1792PubMed
go back to reference Kepecs A, van Rossum MCW, Song S, Tegner J (2002) Spike-timing-dependent plasticity: common themes and divergent vistas. Biol Cybern 87:446–458PubMed Kepecs A, van Rossum MCW, Song S, Tegner J (2002) Spike-timing-dependent plasticity: common themes and divergent vistas. Biol Cybern 87:446–458PubMed
go back to reference Khodagholy D, Gelinas N, Buzsáki G (2017) Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358:369–372PubMedPubMedCentral Khodagholy D, Gelinas N, Buzsáki G (2017) Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358:369–372PubMedPubMedCentral
go back to reference Kim SY, Lim W (2013) Sparsely-synchronized brain rhythm in a small-world neural network. J Korean Phys Soc 63:104–113 Kim SY, Lim W (2013) Sparsely-synchronized brain rhythm in a small-world neural network. J Korean Phys Soc 63:104–113
go back to reference Kim SY, Lim W (2014) Realistic thermodynamic and statistical–mechanical measures for neural synchronization. J Neurosci Methods 226:161–170PubMed Kim SY, Lim W (2014) Realistic thermodynamic and statistical–mechanical measures for neural synchronization. J Neurosci Methods 226:161–170PubMed
go back to reference Kim SY, Lim W (2015a) Effect of small-world connectivity on fast sparsely synchronized cortical rhythms. Phys A 421:109–123 Kim SY, Lim W (2015a) Effect of small-world connectivity on fast sparsely synchronized cortical rhythms. Phys A 421:109–123
go back to reference Kim SY, Lim W (2015b) Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons. Cogn Neurodyn 9:179–200PubMed Kim SY, Lim W (2015b) Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons. Cogn Neurodyn 9:179–200PubMed
go back to reference Kim SY, Lim W (2015c) Thermodynamic order parameters and statistical–mechanical measures for characterization of the burst and spike synchronizations of bursting neurons. Phys A 438:544–559 Kim SY, Lim W (2015c) Thermodynamic order parameters and statistical–mechanical measures for characterization of the burst and spike synchronizations of bursting neurons. Phys A 438:544–559
go back to reference Kim SY, Lim W (2015d) Fast sparsely synchronized brain rhythms in a scale-free neural network. Phys Rev E 92:022717 Kim SY, Lim W (2015d) Fast sparsely synchronized brain rhythms in a scale-free neural network. Phys Rev E 92:022717
go back to reference Kim SY, Lim W (2015e) Effect of inter-modular connection on fast sparse synchronization in clustered small-world neural networks. Phys Rev E 92:052716 Kim SY, Lim W (2015e) Effect of inter-modular connection on fast sparse synchronization in clustered small-world neural networks. Phys Rev E 92:052716
go back to reference Kim SY, Lim W (2016) Effect of network architecture on burst and spike synchronization in a scale-free network of bursting neurons. Neural Netw 79:53–77PubMed Kim SY, Lim W (2016) Effect of network architecture on burst and spike synchronization in a scale-free network of bursting neurons. Neural Netw 79:53–77PubMed
go back to reference Kim SY, Lim W (2017a) Emergence of sparsely synchronized rhythms and their responses to external stimuli in an inhomogeneous small-world complex neuronal network. Neural Netw 93:57–75PubMed Kim SY, Lim W (2017a) Emergence of sparsely synchronized rhythms and their responses to external stimuli in an inhomogeneous small-world complex neuronal network. Neural Netw 93:57–75PubMed
go back to reference Kim SY, Lim W (2017b) Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network. Cogn Neurodyn 11:395–413PubMedPubMedCentral Kim SY, Lim W (2017b) Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network. Cogn Neurodyn 11:395–413PubMedPubMedCentral
go back to reference Kim SY, Lim W (2018a) Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity. Neural Netw 97:92–106PubMed Kim SY, Lim W (2018a) Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity. Neural Netw 97:92–106PubMed
go back to reference Kim SY, Lim W (2018b) Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 12:315–342PubMedPubMedCentral Kim SY, Lim W (2018b) Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 12:315–342PubMedPubMedCentral
go back to reference Kim SY, Lim W (2018c) Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network. Neural Netw 106:50–66PubMed Kim SY, Lim W (2018c) Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network. Neural Netw 106:50–66PubMed
go back to reference Kim SY, Lim W (2019) Burst synchronization in a scale-free neuronal network with inhibitory spike-timing-dependent plasticity. Cogn Neurodyn 13:53–73PubMed Kim SY, Lim W (2019) Burst synchronization in a scale-free neuronal network with inhibitory spike-timing-dependent plasticity. Cogn Neurodyn 13:53–73PubMed
go back to reference Kornoski J (1948) Conditional reflexes and neuron organization. Cambridge University Press, Cambridge Kornoski J (1948) Conditional reflexes and neuron organization. Cambridge University Press, Cambridge
go back to reference Kullmann DM, Moreau AW, Bakiri Y, Nicholson E (2012) Plasticity of inhibition. Neuron 75:951–962PubMed Kullmann DM, Moreau AW, Bakiri Y, Nicholson E (2012) Plasticity of inhibition. Neuron 75:951–962PubMed
go back to reference Lameu EL, Macau EEN, Borges FS, Iarosz KC, Caldas IL, Borges RR, Protachevicz PR, Viana RL, Batista AM (2018) Alterations in brain connectivity due to plasticity and synaptic delay. Eur Phys J Spec Top 227:673–682 Lameu EL, Macau EEN, Borges FS, Iarosz KC, Caldas IL, Borges RR, Protachevicz PR, Viana RL, Batista AM (2018) Alterations in brain connectivity due to plasticity and synaptic delay. Eur Phys J Spec Top 227:673–682
go back to reference Lamsa KP, Kullmann DM, Woodin MA (2010) Spike-timing dependent plasticity in inhibitory circuits. Front Synaptic Neurosci 2:8PubMedPubMedCentral Lamsa KP, Kullmann DM, Woodin MA (2010) Spike-timing dependent plasticity in inhibitory circuits. Front Synaptic Neurosci 2:8PubMedPubMedCentral
go back to reference Lei H, Reisenman CE, Wilson CH, Gabbur P, Hildebrand JG (2011) Spiking patterns and their functional implications in the antennal lobe of the Tobacoo Hornworm Manduca sexta. PLoS ONE 6:e23382PubMedPubMedCentral Lei H, Reisenman CE, Wilson CH, Gabbur P, Hildebrand JG (2011) Spiking patterns and their functional implications in the antennal lobe of the Tobacoo Hornworm Manduca sexta. PLoS ONE 6:e23382PubMedPubMedCentral
go back to reference Lim W, Kim SY (2008) Stochastic oscillator death in globally coupled neural systems. J Korean Phys Soc 52:1913–1917 Lim W, Kim SY (2008) Stochastic oscillator death in globally coupled neural systems. J Korean Phys Soc 52:1913–1917
go back to reference Lim W, Kim SY (2011) Statistical-mechanical measure of stochastic spiking coherence in a population of inhibitory subthreshold neuron. J Comput Neurosci 31:667–677PubMed Lim W, Kim SY (2011) Statistical-mechanical measure of stochastic spiking coherence in a population of inhibitory subthreshold neuron. J Comput Neurosci 31:667–677PubMed
go back to reference Logothetis NK, Pauls J, Augath MA, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMed Logothetis NK, Pauls J, Augath MA, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMed
go back to reference Longtin A (1995) Synchronization of the stochastic Fitzhugh–Nagumo equations to periodic forcing. Nuovo Cimento D 17:835–846 Longtin A (1995) Synchronization of the stochastic Fitzhugh–Nagumo equations to periodic forcing. Nuovo Cimento D 17:835–846
go back to reference Longtin A (2000) Stochastic aspects of neural phase locking to periodic signals. In: Kim S, Lee KJ, Sung W (eds) Stochastic dynamics and pattern formation in biological and complex systems. AIP, New York, pp 219–239 Longtin A (2000) Stochastic aspects of neural phase locking to periodic signals. In: Kim S, Lee KJ, Sung W (eds) Stochastic dynamics and pattern formation in biological and complex systems. AIP, New York, pp 219–239
go back to reference Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215PubMed Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215PubMed
go back to reference Markram H, Gerstner W, Sjöström PJ (2012) Spike-timing-dependent plasticity: a comprehensive overview. Front Synaptic Neurosci 4:2PubMedPubMedCentral Markram H, Gerstner W, Sjöström PJ (2012) Spike-timing-dependent plasticity: a comprehensive overview. Front Synaptic Neurosci 4:2PubMedPubMedCentral
go back to reference Merton MK (1968) The Matthew effect in science. Science 159:56–63PubMed Merton MK (1968) The Matthew effect in science. Science 159:56–63PubMed
go back to reference Michalareas G, Vezoli J, van Pelt S, Schoffelen JM, Kennedy H, Fries P (2016) Alpha–beta and gamma rhythms subserve feedback and feedforward influences among human cortical areas. Neuron 89:384–397PubMedPubMedCentral Michalareas G, Vezoli J, van Pelt S, Schoffelen JM, Kennedy H, Fries P (2016) Alpha–beta and gamma rhythms subserve feedback and feedforward influences among human cortical areas. Neuron 89:384–397PubMedPubMedCentral
go back to reference Milgram S (1967) The small-world problem. Psychol Today 1:61–67 Milgram S (1967) The small-world problem. Psychol Today 1:61–67
go back to reference Miyawaki H, Diva K (2016) Regulation of hippocampal firing by network oscillations during sleep. Curr Biol 26:893–902PubMedPubMedCentral Miyawaki H, Diva K (2016) Regulation of hippocampal firing by network oscillations during sleep. Curr Biol 26:893–902PubMedPubMedCentral
go back to reference Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437–1467PubMed Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437–1467PubMed
go back to reference Oliva A, Fernández-Ruiz A, Buzsáki G, Berényi A (2016) Role of hippocampal CA2 region in triggering sharp-wave ripples. Neuron 91:1–14 Oliva A, Fernández-Ruiz A, Buzsáki G, Berényi A (2016) Role of hippocampal CA2 region in triggering sharp-wave ripples. Neuron 91:1–14
go back to reference Pearson K (1895) Notes on regression and inheritance in the case of two parents. Proc R Soc Lond 58:240–242 Pearson K (1895) Notes on regression and inheritance in the case of two parents. Proc R Soc Lond 58:240–242
go back to reference Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5:805–811PubMed Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5:805–811PubMed
go back to reference Popovych OV, Tass PA (2012) Desynchronizing electrical and sensory coordinated reset neuromodulation. Front Hum Neurosci 6:58PubMedPubMedCentral Popovych OV, Tass PA (2012) Desynchronizing electrical and sensory coordinated reset neuromodulation. Front Hum Neurosci 6:58PubMedPubMedCentral
go back to reference Popovych OV, Yanchuk S, Tass PA (2013) Self-organized noise resistance of oscillatory neural networks with spike-timing-dependent plasticity. Sci Rep 3:2926PubMedPubMedCentral Popovych OV, Yanchuk S, Tass PA (2013) Self-organized noise resistance of oscillatory neural networks with spike-timing-dependent plasticity. Sci Rep 3:2926PubMedPubMedCentral
go back to reference Rojas-Líbano D, Kay LM (2008) Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system. Cogn Neurodyn 2:179–194PubMedPubMedCentral Rojas-Líbano D, Kay LM (2008) Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system. Cogn Neurodyn 2:179–194PubMedPubMedCentral
go back to reference Roux L, Hu B, Eichler R, Stark E, Buzsáki G (2017) Sharp wave ripples during learning stabilize the hioppocampal map. Nat Neurosci 20:845–853PubMedPubMedCentral Roux L, Hu B, Eichler R, Stark E, Buzsáki G (2017) Sharp wave ripples during learning stabilize the hioppocampal map. Nat Neurosci 20:845–853PubMedPubMedCentral
go back to reference Rubin J, Lee DD, Sompolinsky H (2001) Equilibrium properties of temporally asymmetric Hebbian plasticity. Phys Rev Lett 86:364–367PubMed Rubin J, Lee DD, Sompolinsky H (2001) Equilibrium properties of temporally asymmetric Hebbian plasticity. Phys Rev Lett 86:364–367PubMed
go back to reference Saleem AB, Lien AD, Krumin M, Haider B, Rosón MR, Ayaz A, Reinhold K, Busse L, Carandini M, Harris KD (2017) Subcortical source and modulation of the narrowband gamma oscillation in mouse visual cortex. Neuron 93:315–322PubMedPubMedCentral Saleem AB, Lien AD, Krumin M, Haider B, Rosón MR, Ayaz A, Reinhold K, Busse L, Carandini M, Harris KD (2017) Subcortical source and modulation of the narrowband gamma oscillation in mouse visual cortex. Neuron 93:315–322PubMedPubMedCentral
go back to reference San Miguel M, Toral R (2000) Stochastic effects in physical systems. In: Martinez J, Tiemann R, Tirapegui E (eds) Instabilities and nonequilibrium structures VI. Kluwer Academic Publisher, Dordrecht, pp 58–59 San Miguel M, Toral R (2000) Stochastic effects in physical systems. In: Martinez J, Tiemann R, Tirapegui E (eds) Instabilities and nonequilibrium structures VI. Kluwer Academic Publisher, Dordrecht, pp 58–59
go back to reference Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J Math Biol 4:303–321PubMed Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J Math Biol 4:303–321PubMed
go back to reference Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29:171–182PubMed Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29:171–182PubMed
go back to reference Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334–350PubMedPubMedCentral Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334–350PubMedPubMedCentral
go back to reference Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent plasticity synaptic plasticity. Nat Neurosci 3:919–926PubMed Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent plasticity synaptic plasticity. Nat Neurosci 3:919–926PubMed
go back to reference Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:e68PubMedPubMedCentral Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:e68PubMedPubMedCentral
go back to reference Soto-Trevino C, Thoroughman KA, Marder E, Abbott LF (2001) Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nat Neurosci 4:297–303PubMed Soto-Trevino C, Thoroughman KA, Marder E, Abbott LF (2001) Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nat Neurosci 4:297–303PubMed
go back to reference Sporns O (2011) Networks of the brain. MIT Press, Cambridge Sporns O (2011) Networks of the brain. MIT Press, Cambridge
go back to reference Sporns O, Honey CJ (2006) Small worlds inside big brains. Proc Natl Acad Sci USA 103:19219–19220PubMed Sporns O, Honey CJ (2006) Small worlds inside big brains. Proc Natl Acad Sci USA 103:19219–19220PubMed
go back to reference Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141PubMed Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141PubMed
go back to reference Stent GS (1973) A physiological mechanism for Hebb’s postulate of learning. Proc Natl Acad Sci USA 70:997–1001PubMed Stent GS (1973) A physiological mechanism for Hebb’s postulate of learning. Proc Natl Acad Sci USA 70:997–1001PubMed
go back to reference Strogatz SH (2001) Exploring complex networks. Nature 410:268–276 Strogatz SH (2001) Exploring complex networks. Nature 410:268–276
go back to reference Swann NC, de Hemptinne C, Miocinovic S, Qasim S, Wang SS, Ziman N, Ostrem JL, San Luciano M, Galifianakis NB, Starr PA (2017) Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease. J Neurosci 36:6445–6458 Swann NC, de Hemptinne C, Miocinovic S, Qasim S, Wang SS, Ziman N, Ostrem JL, San Luciano M, Galifianakis NB, Starr PA (2017) Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease. J Neurosci 36:6445–6458
go back to reference Talathi SS, Hwang DU, Ditto WL (2008) Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. J Comput Neurosci 25:262–281PubMed Talathi SS, Hwang DU, Ditto WL (2008) Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. J Comput Neurosci 25:262–281PubMed
go back to reference Taxidis J, Anastassiou CA, Diva K, Koch C (2015) Local field potentials encode place cell ensemble activation during hippocampal sharp wave ripples. Neuron 87:590–604PubMedPubMedCentral Taxidis J, Anastassiou CA, Diva K, Koch C (2015) Local field potentials encode place cell ensemble activation during hippocampal sharp wave ripples. Neuron 87:590–604PubMedPubMedCentral
go back to reference Traub RD, Whittington MA (2010) Cortical oscillations in health and diseases. Oxford University Press, New York Traub RD, Whittington MA (2010) Cortical oscillations in health and diseases. Oxford University Press, New York
go back to reference Tzounopoulos T, Kim Y, Oertel D, Trussell LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7:719–725PubMed Tzounopoulos T, Kim Y, Oertel D, Trussell LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7:719–725PubMed
go back to reference Ujma PP, Bódizs R, Gombos F, Stintzing J, Konrad BN, Ginzel L, Steiger A, Dresler M (2015) Nap sleep spindle correlates of intelligence. Sci Rep 5:17159PubMedPubMedCentral Ujma PP, Bódizs R, Gombos F, Stintzing J, Konrad BN, Ginzel L, Steiger A, Dresler M (2015) Nap sleep spindle correlates of intelligence. Sci Rep 5:17159PubMedPubMedCentral
go back to reference van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724–1726PubMed van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724–1726PubMed
go back to reference van Vreeswijk C, Sompolinksy H (1998) Chaotic balanced state in a model of cortical circuits. Neural Comput 10:1321–1371PubMed van Vreeswijk C, Sompolinksy H (1998) Chaotic balanced state in a model of cortical circuits. Neural Comput 10:1321–1371PubMed
go back to reference Veit J, Hakim R, Jadi MP, Sejnowski TJ, Adesnik H (2017) Cortical gamma band synchronization through somatostatin interneurons. Nat Neurosci 20:951–959PubMedPubMedCentral Veit J, Hakim R, Jadi MP, Sejnowski TJ, Adesnik H (2017) Cortical gamma band synchronization through somatostatin interneurons. Nat Neurosci 20:951–959PubMedPubMedCentral
go back to reference Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334:1569–1573PubMed Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334:1569–1573PubMed
go back to reference Vogels TP, Froemke RC, Doyon N, Gilson M, Haas JS, Liu R, Maffei A, Miller P, Wierenga CJ, Woodin MA, Zenke F, Sprekeler H (2013) Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Front Neural Circuits 7:119PubMedPubMedCentral Vogels TP, Froemke RC, Doyon N, Gilson M, Haas JS, Liu R, Maffei A, Miller P, Wierenga CJ, Woodin MA, Zenke F, Sprekeler H (2013) Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Front Neural Circuits 7:119PubMedPubMedCentral
go back to reference von der Malsburg C (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14:85–100PubMed von der Malsburg C (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14:85–100PubMed
go back to reference Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90:1195–1268PubMedPubMedCentral Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90:1195–1268PubMedPubMedCentral
go back to reference Watts DJ (2003) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, Princeton Watts DJ (2003) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, Princeton
go back to reference Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442 Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442
go back to reference Wigner EP (1967) Random matrices in physics. SIAM Rev 9:1–23 Wigner EP (1967) Random matrices in physics. SIAM Rev 9:1–23
go back to reference Wittenberg GM, Wang SS (2006) Malleability of spike-timing-dependent plasticity at the CA3–CA1 synapse. J Neurosci 26:6610–6617PubMedPubMedCentral Wittenberg GM, Wang SS (2006) Malleability of spike-timing-dependent plasticity at the CA3–CA1 synapse. J Neurosci 26:6610–6617PubMedPubMedCentral
go back to reference Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl− transporter activity. Neuron 39:807–820PubMed Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl− transporter activity. Neuron 39:807–820PubMed
go back to reference Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinorectal synapses. Nature 395:37–44PubMed Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinorectal synapses. Nature 395:37–44PubMed
Metadata
Title
Effect of interpopulation spike-timing-dependent plasticity on synchronized rhythms in neuronal networks with inhibitory and excitatory populations
Authors
Sang-Yoon Kim
Woochang Lim
Publication date
17-03-2020
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 4/2020
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-020-09580-y

Other articles of this Issue 4/2020

Cognitive Neurodynamics 4/2020 Go to the issue