Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 9-10/2021

23-02-2021 | ORIGINAL ARTICLE

Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel

Authors: Ali Eliasu, Aleksander Czekanski, Solomon Boakye-Yiadom

Published in: The International Journal of Advanced Manufacturing Technology | Issue 9-10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, parts were fabricated using variations of laser power, scanning speed, and hatch spacing (volumetric energy density (VED)) to understand the effect of processing parameters on the structure and properties of 316L stainless steel. It was observed that parts with good microstructural integrity and properties (hardness, porosity, and density) were obtained when using VEDs between 40 and 100 J/mm3. Also, VED was valuable when comparing the extent of consolidation and unfused/unmelted powders (porosity). The individual printing parameters offered a better understanding of the microstructure evolution, part density, and hardness of the material when compared with the VED. Also, it was shown that the relative beam spot size to the hatch spacing creates unique conditions that result in either a melt track offset or overlap which dictates the energy requirement for the creation of a part with good qualities. Melt track overlaps require low power while melt track offsets require high power to create parts with good qualities (density, porosity, and hardness). In addition, it was observed that the hatch spacing dominates the scanning speed in determining part porosity while the scanning speed dominates the hatch spacing in determining part density. The individual printing parameters had a significant effect on the morphology, size, and spatial distribution of columnar and cellular subgrain structures. Higher laser power and high scanning speed resulted in coarser, well-defined cellular and columnar subgrains with relatively low hardness. Also, increasingly hatch spacing resulted in finer subgrain structures with dense columnar structures and sparsely distributed cellular structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243CrossRef Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243CrossRef
2.
go back to reference Harrysson OLA, Cansizoglu O, Marcellin-little DJ, Cormier DR, West HA (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng: C 28(3):366–73 Harrysson OLA, Cansizoglu O, Marcellin-little DJ, Cormier DR, West HA (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng: C 28(3):366–73
3.
go back to reference Al-Tamimi AA, Fernandes PRA, Peach C, Cooper G, Diver C, Bartolo PJ (2017) Metallic bone fixation implants: a novel design approach for reducing the stress shielding phenomenon. Virtual Phys Prototyp 12(2):141–151CrossRef Al-Tamimi AA, Fernandes PRA, Peach C, Cooper G, Diver C, Bartolo PJ (2017) Metallic bone fixation implants: a novel design approach for reducing the stress shielding phenomenon. Virtual Phys Prototyp 12(2):141–151CrossRef
4.
go back to reference Yan Q, Dong H, Su J, Han J, Song B, Wei Q, Shi Y (2018) A review of 3D printing technology for medical applications. Engineering 4:729–742CrossRef Yan Q, Dong H, Su J, Han J, Song B, Wei Q, Shi Y (2018) A review of 3D printing technology for medical applications. Engineering 4:729–742CrossRef
5.
go back to reference Zuback JS, DebRoy T (2018) The hardness of additively manufactured alloys. Materials 11(11):2070 Zuback JS, DebRoy T (2018) The hardness of additively manufactured alloys. Materials 11(11):2070
6.
go back to reference Manfredi D et al (2013) Direct metal laser sintering: an additive manufacturing technology ready to produce lightweight structural parts for robotic applications. Metall Ital 105(10):15–24 Manfredi D et al (2013) Direct metal laser sintering: an additive manufacturing technology ready to produce lightweight structural parts for robotic applications. Metall Ital 105(10):15–24
7.
go back to reference Jahangir MN, Mamun MAH, Sealy MP (2018) A review of additive manufacturing of magnesium alloys. AIP Conference Proceedings 1980(1):030026 Jahangir MN, Mamun MAH, Sealy MP (2018) A review of additive manufacturing of magnesium alloys. AIP Conference Proceedings 1980(1):030026
8.
go back to reference Jiang J, Ma Y (2020) Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: A review. Micromachines 11(7):633 Jiang J, Ma Y (2020) Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: A review. Micromachines 11(7):633
9.
go back to reference Yusuf SM, Gao N (2017) Influence of energy density on metallurgy and properties in metal additive manufacturing. Mater Sci Technol (United Kingdom) 33(11):1269–1289CrossRef Yusuf SM, Gao N (2017) Influence of energy density on metallurgy and properties in metal additive manufacturing. Mater Sci Technol (United Kingdom) 33(11):1269–1289CrossRef
10.
go back to reference Yusuf S, Chen Y, Boardman R, Yang S, Gao N (2017) Investigation on porosity and microhardness of 316L stainless steel fabricated by selective laser melting. Metals (Basel) 7(2):64CrossRef Yusuf S, Chen Y, Boardman R, Yang S, Gao N (2017) Investigation on porosity and microhardness of 316L stainless steel fabricated by selective laser melting. Metals (Basel) 7(2):64CrossRef
11.
go back to reference Kruth J, Deckers J, Yasa E, Wauthle R (2012) Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 226(6):980–991 Kruth J, Deckers J, Yasa E, Wauthle R (2012) Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 226(6):980–991
12.
go back to reference Liu Y, Yang Y, Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 87(1–4):647–656CrossRef Liu Y, Yang Y, Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 87(1–4):647–656CrossRef
13.
go back to reference Kurzynowski T, Gruber K, Stopyra W, Kuźnicka B, Chlebus E (2018) Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting. Mater Sci Eng A 718(January):64–73CrossRef Kurzynowski T, Gruber K, Stopyra W, Kuźnicka B, Chlebus E (2018) Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting. Mater Sci Eng A 718(January):64–73CrossRef
14.
go back to reference Xu W, Brandt M, Sun S, Elambasseril J, Liu Q, Latham K, Xia K, Qian M (2015) Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition. Acta Mater 85:74–84CrossRef Xu W, Brandt M, Sun S, Elambasseril J, Liu Q, Latham K, Xia K, Qian M (2015) Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition. Acta Mater 85:74–84CrossRef
15.
go back to reference Kamath C, El-Dasher B, Gallegos GF, King WE, Sisto A (2014) Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Technol 74(1–4):65–78CrossRef Kamath C, El-Dasher B, Gallegos GF, King WE, Sisto A (2014) Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Technol 74(1–4):65–78CrossRef
16.
go back to reference Yadroitsev I, Yadroitsau I, Yadroitsev I (2009) Selective laser melting: direct manufacturing of 3D-objects by selective laser melting of metal powders. Appl Catal B Environ 75(3–4):229–238 Yadroitsev I, Yadroitsau I, Yadroitsev I (2009) Selective laser melting: direct manufacturing of 3D-objects by selective laser melting of metal powders. Appl Catal B Environ 75(3–4):229–238
17.
go back to reference Kusuma C (2016) The effect of laser power and scan speed on melt pool characteristics of pure Titanium and Ti-6Al-4V alloy for selective laser melting. Dissertation, Kakatiya University, India Kusuma C (2016) The effect of laser power and scan speed on melt pool characteristics of pure Titanium and Ti-6Al-4V alloy for selective laser melting. Dissertation, Kakatiya University, India
18.
go back to reference Raza T (2020) Process understanding and weldability of laser-powder bed fusion manufactured alloy. Dissertation, University West, Trollhättan Raza T (2020) Process understanding and weldability of laser-powder bed fusion manufactured alloy. Dissertation, University West, Trollhättan
19.
go back to reference Sun Z, Tan X, Tor SB, Yeong WY (2016) Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater Des 104:197–204CrossRef Sun Z, Tan X, Tor SB, Yeong WY (2016) Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater Des 104:197–204CrossRef
20.
go back to reference Childs THC, Hauser C, Badrossamay M (2004) Mapping and modelling single scan track formation in direct metal selective laser melting. CIRP Ann Manuf Technol 53(1):191–194CrossRef Childs THC, Hauser C, Badrossamay M (2004) Mapping and modelling single scan track formation in direct metal selective laser melting. CIRP Ann Manuf Technol 53(1):191–194CrossRef
21.
go back to reference Pavlov M, Doubenskaia M, Smurov I (2010) Pyrometric analysis of thermal processes in SLM technology. Phys Procedia 5(PART 2):523–531CrossRef Pavlov M, Doubenskaia M, Smurov I (2010) Pyrometric analysis of thermal processes in SLM technology. Phys Procedia 5(PART 2):523–531CrossRef
22.
go back to reference Tang X, Zhang S, Zhang C, Chen J, Zhang J, Liu Y (2020) Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM. Mater Charact 170(September):110718CrossRef Tang X, Zhang S, Zhang C, Chen J, Zhang J, Liu Y (2020) Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM. Mater Charact 170(September):110718CrossRef
23.
go back to reference Yakout M, Elbestawi MA, Veldhuis SC (2019) Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L. J Mater Process Technol 266(October 2018):397–420CrossRef Yakout M, Elbestawi MA, Veldhuis SC (2019) Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L. J Mater Process Technol 266(October 2018):397–420CrossRef
24.
go back to reference Scipioni Bertoli U, Wolfer AJ, Matthews MJ, Delplanque JPR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340CrossRef Scipioni Bertoli U, Wolfer AJ, Matthews MJ, Delplanque JPR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340CrossRef
25.
go back to reference Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2(4):041101 Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2(4):041101
26.
go back to reference Cherry JA, Davies HM, Mehmood S, Lavery NP, Brown SGR, Sienz J (2014) Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76(5–8):869–879 Cherry JA, Davies HM, Mehmood S, Lavery NP, Brown SGR, Sienz J (2014) Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76(5–8):869–879
27.
go back to reference Galarraga H, Lados DA, Dehoff RR, Kirka MM, Nandwana P (2016) Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Addit Manuf 10:47–57 Galarraga H, Lados DA, Dehoff RR, Kirka MM, Nandwana P (2016) Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Addit Manuf 10:47–57
28.
go back to reference Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater 58(9):3303–3312CrossRef Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater 58(9):3303–3312CrossRef
29.
go back to reference Weng F, Gao S, Jiang J, Wang JJ, Guo P (2019) A novel strategy to fabricate thin 316L stainless steel rods by continuous directed energy deposition in Z direction. Addit Manuf 27(March):474–481 Weng F, Gao S, Jiang J, Wang JJ, Guo P (2019) A novel strategy to fabricate thin 316L stainless steel rods by continuous directed energy deposition in Z direction. Addit Manuf 27(March):474–481
30.
go back to reference Cooke A, Slotwinski J (2015) Properties of metal powders for additive manufacturing: A review of the state of the Art of Metal Powder Property Testing. Additive Manufacturing Materials: Standards, Testing and Applicability 21–48 Cooke A, Slotwinski J (2015) Properties of metal powders for additive manufacturing: A review of the state of the Art of Metal Powder Property Testing. Additive Manufacturing Materials: Standards, Testing and Applicability 21–48
31.
go back to reference Chao J, Capdevila C, Serrano M, Garcia-Junceda A, Jimenez JA, Miller MK (2014) Effect of α-α’ phase separation on notch impact behavior of oxide dispersion strengthened (ODS) Fe20Cr5Al alloy. Mater Des 53:1037–1046CrossRef Chao J, Capdevila C, Serrano M, Garcia-Junceda A, Jimenez JA, Miller MK (2014) Effect of α-α’ phase separation on notch impact behavior of oxide dispersion strengthened (ODS) Fe20Cr5Al alloy. Mater Des 53:1037–1046CrossRef
32.
go back to reference Vrancken B, Thijs L, Kruth JP, Humbeeck JV (2012) Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compd 541:177–185 Vrancken B, Thijs L, Kruth JP, Humbeeck JV (2012) Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compd 541:177–185
33.
go back to reference Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1–4:87–98 Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1–4:87–98
34.
go back to reference Zhang B, Li Y, Bai Q (2017) Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng (Engl Ed) 30(3):515–527CrossRef Zhang B, Li Y, Bai Q (2017) Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng (Engl Ed) 30(3):515–527CrossRef
36.
go back to reference Ocylok S, Alexeev E, Mann S, Weisheit A, Wissenbach K, Kelbassa I (2014) Correlations of melt pool geometry and process parameters during laser metal deposition by coaxial process monitoring. Phys Procedia 56(C):228–238CrossRef Ocylok S, Alexeev E, Mann S, Weisheit A, Wissenbach K, Kelbassa I (2014) Correlations of melt pool geometry and process parameters during laser metal deposition by coaxial process monitoring. Phys Procedia 56(C):228–238CrossRef
37.
go back to reference Peen R (2017) 3D printing of 316L stainless steel and its effect on microstructure and mechanical properties. Dissertation, Montana Tech Peen R (2017) 3D printing of 316L stainless steel and its effect on microstructure and mechanical properties. Dissertation, Montana Tech
38.
go back to reference Ghasri-Khouzani M, Peng H, Attardo R, Ostiguy P, Neidig J, Billo R, Hoelzle D, Shankar MR (2018) Direct metal laser-sintered stainless steel: comparison of microstructure and hardness between different planes. Int J Adv Manuf Technol 95(9–12):4031–4037CrossRef Ghasri-Khouzani M, Peng H, Attardo R, Ostiguy P, Neidig J, Billo R, Hoelzle D, Shankar MR (2018) Direct metal laser-sintered stainless steel: comparison of microstructure and hardness between different planes. Int J Adv Manuf Technol 95(9–12):4031–4037CrossRef
39.
go back to reference Saeidi K, Gao X, Zhong Y, Shen ZJ (2015) Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng A 625:221–229CrossRef Saeidi K, Gao X, Zhong Y, Shen ZJ (2015) Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng A 625:221–229CrossRef
40.
go back to reference Hebert RJ (Feb. 2016) Viewpoint: metallurgical aspects of powder bed metal additive manufacturing. J Mater Sci 51(3):1165–1175CrossRef Hebert RJ (Feb. 2016) Viewpoint: metallurgical aspects of powder bed metal additive manufacturing. J Mater Sci 51(3):1165–1175CrossRef
41.
go back to reference Ziętala M, Durejko T, Polański M, Kunce I, Płociński T, Zieliński W, Łazińska M, Stępniowski W, Czujko T, Kurzydłowski KJ, Bojar Z (2016) The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping. Mater Sci Eng A 677:1–10CrossRef Ziętala M, Durejko T, Polański M, Kunce I, Płociński T, Zieliński W, Łazińska M, Stępniowski W, Czujko T, Kurzydłowski KJ, Bojar Z (2016) The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping. Mater Sci Eng A 677:1–10CrossRef
Metadata
Title
Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel
Authors
Ali Eliasu
Aleksander Czekanski
Solomon Boakye-Yiadom
Publication date
23-02-2021
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 9-10/2021
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-06818-9

Other articles of this Issue 9-10/2021

The International Journal of Advanced Manufacturing Technology 9-10/2021 Go to the issue

Premium Partners