Skip to main content
Top

2024 | OriginalPaper | Chapter

Effect of Loss Functions on the Learning Capabilities of Physics-Informed Neural Networks in Mechanical Systems

Authors : Cristiano Martinelli, Alexander Elliott, Andrea Cammarano

Published in: Nonlinear Structures & Systems, Vol. 1

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the field of aerospace and mechanical engineering, the identification of mathematical models capable of accurately representing the dynamics of mechanical structures is extremely important to improve the design and accelerate the certification of new systems and structures. Recent developments in the field of machine learning have demonstrated that Neural Networks (NNs) can accurately model the dynamics of linear and nonlinear systems in the time domain. Physics-Informed Neural Networks (PINNs) exploit this property and utilise physics-informed loss functions to identify the parameters of systems. Nonetheless, it is still not completely clear how the loss functions affect the learning process of the NNs and which type of function improves/deteriorates the identification process of the parameters associated with mechanical systems.
In this chapter, we investigate the effect of three different loss functions on the learning and identification capabilities of PINNs when mechanical problems are considered. To this end, classic Forward Neural Networks (FNNs) are embedded in a parameter identification scheme based on physics-informed loss functions, and the parameters (natural frequency and damping) of a single-degree-of-freedom (SDOF) mechanical oscillator are identified via numerical experiments. In order to minimise the required training data, the loss functions are built considering the governing equations of motion and a single dynamics response of the oscillator in the form of either acceleration, velocity, or displacement. Their effect is then evaluated in terms of the accuracy of the identified unknown parameters and the capacity of the NN to predict the unknown physical dynamic responses. We demonstrate that loss functions based on the acceleration time series allow the NN to correctly learn the unknown physical dynamic responses, i.e., the velocity and the displacement, with great accuracy; this results in faster and more efficient learning of the dynamic behaviour of the system which, in turn, allows to identify the correct mechanical parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ewins, D.J.: Modal Testing: Theory, Practice and Application. Wiley, Hoboken (2009) Ewins, D.J.: Modal Testing: Theory, Practice and Application. Wiley, Hoboken (2009)
2.
go back to reference Friswell, M., Mottershead, J.E.: Finite Element Model Updating in Structural Dynamics, vol. 38. Springer Science & Business Media, Cham (1995) Friswell, M., Mottershead, J.E.: Finite Element Model Updating in Structural Dynamics, vol. 38. Springer Science & Business Media, Cham (1995)
3.
go back to reference Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20, 505–592 (2006)CrossRef Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20, 505–592 (2006)CrossRef
4.
go back to reference Noël, J.P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)CrossRef Noël, J.P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)CrossRef
5.
go back to reference Masri, S.F., Caughey, T.K.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46, 433–447 (1979)CrossRef Masri, S.F., Caughey, T.K.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46, 433–447 (1979)CrossRef
6.
go back to reference Marchesiello, S., Garibaldi, L.: A time domain approach for identifying nonlinear vibrating structures by subspace methods. Mech. Syst. Signal Process. 22, 81–101 (2008)CrossRef Marchesiello, S., Garibaldi, L.: A time domain approach for identifying nonlinear vibrating structures by subspace methods. Mech. Syst. Signal Process. 22, 81–101 (2008)CrossRef
7.
go back to reference Richards, C.M., Singh, R.: Identification of multi-degree-of-freedom non-linear systems under random excitations by the “reverse path” spectral method. J. Sound Vib. 213(4), 673–708 (1998)CrossRef Richards, C.M., Singh, R.: Identification of multi-degree-of-freedom non-linear systems under random excitations by the “reverse path” spectral method. J. Sound Vib. 213(4), 673–708 (1998)CrossRef
8.
go back to reference Noël, J.-P., Kerschen, G.: Frequency-domain subspace identification for nonlinear mechanical systems. Mech. Syst. Signal Process. 40(2), 701–717 (2013)CrossRef Noël, J.-P., Kerschen, G.: Frequency-domain subspace identification for nonlinear mechanical systems. Mech. Syst. Signal Process. 40(2), 701–717 (2013)CrossRef
9.
go back to reference Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetCrossRef Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)MathSciNetCrossRef
10.
go back to reference Fresca, S., Gobat, G., Fedeli, P., Frangi, A., Manzoni, A.: Deep learning-based reduced order models for the real-time simulation of the nonlinear dynamics of microstructures. Int. J. Numer. Methods Eng. 123(20), 4749–4777 (2022)MathSciNetCrossRef Fresca, S., Gobat, G., Fedeli, P., Frangi, A., Manzoni, A.: Deep learning-based reduced order models for the real-time simulation of the nonlinear dynamics of microstructures. Int. J. Numer. Methods Eng. 123(20), 4749–4777 (2022)MathSciNetCrossRef
11.
go back to reference Simpson, T., Tsialiamanis, G., Dervilis, N., Worden, K., Chatzi, E.: On the use of variational autoencoders for nonlinear modal analysis. In: Brake, M.R.W., Renson, L., Kuether, R.J., Tiso, P. (eds.) Nonlinear Structures & Systems, vol. 1, pp. 297–300. Springer International Publishing, Cham (2023)CrossRef Simpson, T., Tsialiamanis, G., Dervilis, N., Worden, K., Chatzi, E.: On the use of variational autoencoders for nonlinear modal analysis. In: Brake, M.R.W., Renson, L., Kuether, R.J., Tiso, P. (eds.) Nonlinear Structures & Systems, vol. 1, pp. 297–300. Springer International Publishing, Cham (2023)CrossRef
12.
go back to reference Haghighat, E., Raissi, M., Moure, A., Gomez, H., Juanes, R.: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput. Methods Appl. Mech. Eng. 379, 113741 (2021)MathSciNetCrossRef Haghighat, E., Raissi, M., Moure, A., Gomez, H., Juanes, R.: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput. Methods Appl. Mech. Eng. 379, 113741 (2021)MathSciNetCrossRef
13.
go back to reference Szydlowski, M.J., Schwingshackl, C., Renson, L.: Modelling nonlinear structures using physics-guided, machine-learnt models. In: Brake, M.R.W., Renson, L., Kuether, R.J., Tiso, P. (eds.) Nonlinear Structures & Systems, vol. 1. Springer International Publishing, Cham (2023) Szydlowski, M.J., Schwingshackl, C., Renson, L.: Modelling nonlinear structures using physics-guided, machine-learnt models. In: Brake, M.R.W., Renson, L., Kuether, R.J., Tiso, P. (eds.) Nonlinear Structures & Systems, vol. 1. Springer International Publishing, Cham (2023)
14.
go back to reference Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63, 208–228 (2021)MathSciNetCrossRef Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63, 208–228 (2021)MathSciNetCrossRef
15.
go back to reference Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014) Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
16.
go back to reference Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y., Courville, A.: On the spectral bias of neural networks. In: International Conference on Machine Learning, pp. 5301–5310. PMLR (2019) Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y., Courville, A.: On the spectral bias of neural networks. In: International Conference on Machine Learning, pp. 5301–5310. PMLR (2019)
Metadata
Title
Effect of Loss Functions on the Learning Capabilities of Physics-Informed Neural Networks in Mechanical Systems
Authors
Cristiano Martinelli
Alexander Elliott
Andrea Cammarano
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-69409-7_23