Skip to main content
Top
Published in: Journal of Iron and Steel Research International 8/2019

27-07-2019 | Original Paper

Effect of matrix structure on mechanical properties and dry rolling–sliding wear performance of alloyed ductile iron

Authors: Hua Zhang, Yan-xin Wu, Qiu-ju Li, Xin Hong

Published in: Journal of Iron and Steel Research International | Issue 8/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of matrix structure on mechanical properties and dry rolling–sliding wear performance of alloyed ductile iron was examined. Four kinds of alloyed ductile irons with different matrix structures were produced through an adequate balance of alloying elements. Tensile tests and dry rolling–sliding wear tests were carried out at room temperature. The results show that yield strength and ultimate tensile strength increase, while elongation decreases until the matrix fully becomes pearlite. The lower matrix hardness results in more graphite emerging on the contact surface, which yields the decrease in friction coefficient. Besides, the wear rate decreases with the increase in matrix hardness among alloyed ductile irons except that with full pearlite matrix, the wear performance of which seems to be deteriorated due to poor fracture toughness. The main wear mechanism is delamination under an air-cooling condition. Based on the results of mechanical and wear tests, ductile iron with about 80% pearlite exhibits better wear performance as well as relatively reasonable mechanical properties.
Literature
[1]
go back to reference S.C. Lin, T.S. Lui, L.H. Chen, J.M. Song, Metall. Mater. Trans. A 33 (2002) 2623–2634.CrossRef S.C. Lin, T.S. Lui, L.H. Chen, J.M. Song, Metall. Mater. Trans. A 33 (2002) 2623–2634.CrossRef
[2]
go back to reference V. Fontanari, M. Benedetti, C. Girardi, L. Giordanino, Wear 350–351 (2016) 68–73.CrossRef V. Fontanari, M. Benedetti, C. Girardi, L. Giordanino, Wear 350–351 (2016) 68–73.CrossRef
[3]
go back to reference R.A. Gonzaga, J.F. Carrasquilla, J. Mater. Process. Technol. 162–163 (2005) 293–297.CrossRef R.A. Gonzaga, J.F. Carrasquilla, J. Mater. Process. Technol. 162–163 (2005) 293–297.CrossRef
[4]
go back to reference J. Tunna, J. Sinclair, J. Perez, Proc. IMechE Part F: J. Rail and Rapid Transit 221 (2007) 271–289. J. Tunna, J. Sinclair, J. Perez, Proc. IMechE Part F: J. Rail and Rapid Transit 221 (2007) 271–289.
[5]
go back to reference N. Zhang, J.W. Zhang, L.T. Lu, M.T. Zhang, D.F. Zeng, Q.P. Song, Mater. Des. 89 (2016) 815–822.CrossRef N. Zhang, J.W. Zhang, L.T. Lu, M.T. Zhang, D.F. Zeng, Q.P. Song, Mater. Des. 89 (2016) 815–822.CrossRef
[7]
go back to reference L. Wojciechowski, S. Eymard, Z. Ignaszak, T.G. Mathia, Tribol. Int. 90 (2015) 445–454.CrossRef L. Wojciechowski, S. Eymard, Z. Ignaszak, T.G. Mathia, Tribol. Int. 90 (2015) 445–454.CrossRef
[8]
go back to reference H.R. Abedi, A. Fareghi, H. Saghafian, S.H. Kheirandish, Wear 268 (2010) 622–628.CrossRef H.R. Abedi, A. Fareghi, H. Saghafian, S.H. Kheirandish, Wear 268 (2010) 622–628.CrossRef
[10]
[12]
go back to reference S.C. Murcia, M.A. Paniagua, E.A. Ossa, Mater. Sci. Eng. A 566 (2013) 8–15.CrossRef S.C. Murcia, M.A. Paniagua, E.A. Ossa, Mater. Sci. Eng. A 566 (2013) 8–15.CrossRef
[13]
go back to reference D.F. Zeng, L.T. Lu, J.W. Zhang, W.J. Wang, M.H. Zhu, Z.F. Xu, Tribology 32 (2012) 171–175. D.F. Zeng, L.T. Lu, J.W. Zhang, W.J. Wang, M.H. Zhu, Z.F. Xu, Tribology 32 (2012) 171–175.
[14]
[15]
[16]
go back to reference A. Alhussein, M. Risbet, A. Bastien, J.P. Chobaut, D. Balloy, J. Favergeon, Mater. Sci. Eng. A 605 (2014) 222–228.CrossRef A. Alhussein, M. Risbet, A. Bastien, J.P. Chobaut, D. Balloy, J. Favergeon, Mater. Sci. Eng. A 605 (2014) 222–228.CrossRef
[17]
[18]
[19]
go back to reference J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, ISIJ Int. 54 (2014) 2926–2932.CrossRef J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, ISIJ Int. 54 (2014) 2926–2932.CrossRef
[20]
go back to reference H. Zhang, Y.X. Wu, J.X. Fu, J. Xu, Q.J. Zhai, J. Iron Steel Res. Int. 24 (2017) 59–66.CrossRef H. Zhang, Y.X. Wu, J.X. Fu, J. Xu, Q.J. Zhai, J. Iron Steel Res. Int. 24 (2017) 59–66.CrossRef
[21]
go back to reference A. Shayesteh-Zeraati, H. Naser-Zoshki, A.R. Kiani-Rashid, J. Alloy. Compd. 500 (2010) 129–133.CrossRef A. Shayesteh-Zeraati, H. Naser-Zoshki, A.R. Kiani-Rashid, J. Alloy. Compd. 500 (2010) 129–133.CrossRef
[22]
go back to reference X. Chen, J. Xu, H. Hu, H. Mohrbacher, M. Kang, W. Zhang, A. Guo, Q. Zhai, Mater. Sci. Eng. A 688 (2017) 416–428.CrossRef X. Chen, J. Xu, H. Hu, H. Mohrbacher, M. Kang, W. Zhang, A. Guo, Q. Zhai, Mater. Sci. Eng. A 688 (2017) 416–428.CrossRef
[23]
go back to reference Z. Glavas, A. Strkalj, K. Maldini, Metall. Mater. Trans. B 47 (2016) 2487–2497.CrossRef Z. Glavas, A. Strkalj, K. Maldini, Metall. Mater. Trans. B 47 (2016) 2487–2497.CrossRef
[24]
go back to reference H. Sazegaran, A.R. Kiani-Rashid, J.V. Khaki, Int. J. Miner. Metall. Mater. 23 (2016) 676–682.CrossRef H. Sazegaran, A.R. Kiani-Rashid, J.V. Khaki, Int. J. Miner. Metall. Mater. 23 (2016) 676–682.CrossRef
[26]
go back to reference R.M. Ghergu, J. Sertucha, Y. Thebault, J. Lacaze, ISIJ Int. 52 (2012) 2036-2041.CrossRef R.M. Ghergu, J. Sertucha, Y. Thebault, J. Lacaze, ISIJ Int. 52 (2012) 2036-2041.CrossRef
[27]
[28]
[29]
go back to reference K.A. Kasvayee, K. Salomonsson, E. Ghassemali, A.E.W. Jarfors, Mater. Sci. Eng. A 655 (2016) 27–35.CrossRef K.A. Kasvayee, K. Salomonsson, E. Ghassemali, A.E.W. Jarfors, Mater. Sci. Eng. A 655 (2016) 27–35.CrossRef
[30]
go back to reference Y. Sun, S. Hu, Z. Xiao, S. You, J. Zhao, Y. Lv, Mater. Des. 41 (2012) 37–42.CrossRef Y. Sun, S. Hu, Z. Xiao, S. You, J. Zhao, Y. Lv, Mater. Des. 41 (2012) 37–42.CrossRef
[32]
[33]
go back to reference K.A. Kasvayee, E. Ghassemali, K. Salomonsson, S. Sujakhu, S. Castagne, A.E.W. Jarfors, Mater. Sci. Eng. A 702 (2017) 265–271.CrossRef K.A. Kasvayee, E. Ghassemali, K. Salomonsson, S. Sujakhu, S. Castagne, A.E.W. Jarfors, Mater. Sci. Eng. A 702 (2017) 265–271.CrossRef
[34]
go back to reference G. Straffelini, C. Giuliari, M. Pellizzari, E. Veneri, M. Bronzato, Wear 271 (2011) 1602–1608.CrossRef G. Straffelini, C. Giuliari, M. Pellizzari, E. Veneri, M. Bronzato, Wear 271 (2011) 1602–1608.CrossRef
[35]
go back to reference J. Zhang, N. Zhang, M. Zhang, D. Zeng, Q. Song, L. Lu, Wear 318 (2014) 62–67.CrossRef J. Zhang, N. Zhang, M. Zhang, D. Zeng, Q. Song, L. Lu, Wear 318 (2014) 62–67.CrossRef
[36]
go back to reference U.P. Singh, A.M. Popli, D.K. Jain, B. Roy, S. Jha, J. Mater. Eng. Perform. 12 (2003) 573–580.CrossRef U.P. Singh, A.M. Popli, D.K. Jain, B. Roy, S. Jha, J. Mater. Eng. Perform. 12 (2003) 573–580.CrossRef
[37]
[38]
[39]
go back to reference J.F Tian, Y.X. Zhao, Machinery 40 (2013) 45–49. J.F Tian, Y.X. Zhao, Machinery 40 (2013) 45–49.
Metadata
Title
Effect of matrix structure on mechanical properties and dry rolling–sliding wear performance of alloyed ductile iron
Authors
Hua Zhang
Yan-xin Wu
Qiu-ju Li
Xin Hong
Publication date
27-07-2019
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 8/2019
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-019-00302-1

Other articles of this Issue 8/2019

Journal of Iron and Steel Research International 8/2019 Go to the issue

Premium Partners