Introduction
Archaeological waterlogged wood has a tendency to shrink and degrade on drying. This is known to relate to chemical and physical changes within the cell wall material. This paper sets out to investigate the porosity of the cell wall of waterlogged archaeological wood, and its influence on hygroscopicity, with the aim of increasing the understanding of the mechanisms of preservation available to the curator in preparing artefacts for storage, with a particular emphasis on silane treatments.
Wood cell walls have a porous structure with numerous void spaces of different size and shape. In sound wood, the largest pores in the cell wall are those of pit membranes (20–100 nm), followed by interfibrillar void spaces with a diameter range of 1 nm in dry wood to 1.2–10 nm in the swollen state, and finally, the smallest are transient cell wall capillaries that exist only when the cell wall is in the swollen state (0.4–100 nm according to various researchers) (Burr and Stamm
1956; Fengel and Wegener
1984; Nicholas
1973; Smulski and Cote
1984; Yin et al.
2015). As the porosity of the cell wall influences many physical and chemical wood properties, the “geometry” of the pores (volume, size, shape and connectivity) has been studied to understand processes such as wood–water relationships, the transfer of matter in wood, fibre shrinkage, mechanical properties, wood decay, chemical bleaching, pulping and modification of wood (e.g. Flournoy et al.
1991; Grönqvist et al.
2014; Hill and Papadopoulos
2001; Stone and Scallan
1968; Yin et al.
2015; Zauer et al.
2014). Others have considered porosity at a different length scale, including the cell lumina themselves (Pfriem et al.
2009; Plötze and Niemz
2011); however, this paper will consider only the cell wall porosity. Therefore, in the subsequent text, any use of the term porosity refers to cell wall porosity unless specifically stated.
In the case of waterlogged archaeological wood, though, due to its microbial degradation, the porosity of the cell wall takes on a different meaning. While low oxygen availability in wet environments reduces the number of potential wood degraders, decay by anaerobic microorganisms, such as soft-rot fungi, erosion and tunnelling bacteria, occurs, thus increasing cell wall porosity (Blanchette
2000,
2010; Björdal
2012). Soft-rot fungi initiate decay from the cell lumen and degrade polysaccharides in preference to lignin. Two distinct morphological forms of soft-rot decay are recognised: Type I creates characteristic cavities parallel to the direction of the cellulose microfibrils in the secondary cell wall (S2). The length of these cavities can reach ca. 40 µm, and their diameter ranges from 0.2 to 0.3 µm in the early stage of decay (which corresponds to the diameter of the hyphae) to 3–5 µm in late stages of decay. In comparison, Type II soft-rot results in erosion of the whole secondary wall. The characteristic feature of soft-rot fungi is that they do not degrade the middle lamellae. Therefore, even in severely degraded wood, the lignin-rich skeleton of the middle lamellae remains well preserved helping the wood maintain its integrity under wet conditions (Björdal
2012; Blanchette
2000; Daniel
2014; Hale and Eaton
1986).
Erosion and tunnelling bacteria are similar in size (1.5–2.0 µm in length and 0.5 µm in diameter), and they often co-attack the same wood cells. Similar to soft-rot, erosion bacteria can decompose cellulose and hemicelluloses leaving a coherent skeleton of middle lamellae. They initiate decay from the cell lumen, through the S3 layer towards the S2 region and strictly follow the long direction of the cellulose microfibrils, producing characteristic erosion channels. In comparison, tunnelling bacteria can metabolise a substrate that is rich in lignin and extractives and unlike erosion bacteria or soft-rot, they can cause direct penetration of the cell wall from both the surface of wood and the cell lumen. Moving in all directions, regardless of the microfibril orientation, they produce very thin branching and radiating decay patterns within the cell wall (Björdal
2012; Daniel
2014; Singh
2012; Singh et al.
2016).
When attempting to conserve waterlogged archaeological wood, it is essential to consider the drying processes. It is well known that wood cell wall porosity, even in fresh timber, may be altered by drying processes, whereby the changes can be reversible or permanent. The phenomenon of hornification shows that drying of cellulose fibres causes irreversible contraction of the cell wall. As water exits micropores in the cell wall, their walls collapse and shrink, leading to their closure due to the formation of incremental hydrogen bonding. Re-wetting, due to a breakage of some of the hydrogen bonds, can only partially reopen the collapsed micropores. It leads to swelling of the fibres, but the extent of this swelling is much lower than before drying (Luo and Zhu
2011; Park et al.
2006). On the other hand, capillary tension forces during drying induce internal stresses in the cell wall causing its shrinkage. The shrinkage in sound wood is a natural phenomenon, which may be reversible dependent on the drying history of the material. If the shrinkage is reversible, then there will be some hysteresis and relatively minor permanent alteration after re-wetting as the cells return to their previous state (Skaar
1984). However, under stricter drying conditions (like oven-drying), the capillary forces with the high surface tension of evaporating water are strong enough to pull the pore walls together causing reduction in the pore dimensions or even cause their permanent collapse (Hill and Papadopoulos
2001; Park et al.
2006; Stone and Scallan
1965). The drying damage may also result in uneven microcracks within the cell wall (Borrega and Kärenlampi
2011). When conserving freshly excavated decayed waterlogged wood, the problem of damage during drying is greatly amplified due to the degree of wood degradation and the amount of water in the remaining wooden tissue. Deprived of the strengthening cellulose, the remnants of the cell walls in the form of the lignin-rich skeleton of the middle lamellae are strong enough to allow the wood to keep its integrity, while it is saturated with water. However, they do not provide enough strength to resist the surface tension forces of the evaporating water, which can result in a collapse of the whole remaining cell wall. If unprotected, waterlogged wood exposed to air irreversibly shrinks and distorts, losing its form, integrity and original appearance, which is a tremendous loss when it concerns artefacts of cultural heritage (Björdal
2012; Blanchette
2010). Therefore, appropriate conservation and drying techniques need to be applied immediately to preserve wooden artefacts in their unchanged form. The most common technique for waterlogged wood conservation has been consolidation using polyethylene glycol (PEG) treatment in combination with freeze- or slow air-drying (Bjurhager et al.
2010; Cook and Grattan
1990; Grattan
1982; Hoffmann
1986).
In addition to the above very practical considerations, the changes in the cell wall porosity due to microbial degradation (physical change of the cell wall and cell wall micropore geometry) and drying (additional physical changes in the cell wall and degraded cell wall due to strain, cracking or creation of new pores) have a direct influence on wood–water relationships. As a lignocellulosic material, wood is hygroscopic by its nature. The newly exposed surfaces in the degraded wood are also hygroscopic, but may manifest this effect in a different manner to the classical model of the intact wood cell wall. Management of the hygroscopicity of the archaeological wood is a fundamental concern for the conservator, leading to the consideration of chemical treatments, as discussed later.
The hygroscopic properties of wood stem from the presence of numerous hydroxyl groups of the cell wall polymers which are the main components attracting water. The accessible hydroxyl groups that are able to form hydrogen bonds with water molecules are named sorption sites. Of the main wood components, hemicelluloses have the highest number of sorption sites, compared with cellulose and lignin (Hofstetter et al.
2006; Hill et al.
2010; Engelund et al.
2013). However, the only OH groups accessible to water molecules are those that are not involved in inter- and intramolecular interactions between wood polymers constituting the cell wall, although there is a phenomenon of progressive release of intermolecular hydrogen bonds which occurs on exposure to water. In addition, the mechanical properties of the cell wall can also affect sorption behaviour. The less energy it takes to swell the cell wall, the higher the moisture content at a given relative humidity will be (Hill et al.
2012a,
b). Therefore, it is not only the chemical composition of wood that influences its sorption behaviour but also the microstructure and rheological properties of the cell wall resulting from the characteristics of its particular components, which in the case of archaeological wood, is usually significantly altered by the decay processes (Papadopoulos et al.
2003; Popescu and Hill
2013; Zelinka et al.
2016).
The moisture content influences the weight and density of wood. It also affects its mechanical properties as well as many other characteristics, including thermal and electrical properties. Moreover, appropriate moisture conditions favour the development of wood-decaying fungi and moulds causing loss of wood mechanical strength and aesthetics. Moisture also accelerates wood weathering when exposed outdoors. Strong fluctuations in moisture content lead to wood dimensional changes causing shrinkage or swelling when wood loses or adsorbs moisture, which may result in cracking and irreversible deformations of wood (Kollmann and Cote
1968; Xie et al.
2011b; Rowell
2012). All the above-mentioned factors affect the behaviour of the wood in service, so, knowledge of wood–water relations is of great importance. However, these issues are also crucial for conservators and others who deal with wooden cultural heritage objects. In the case of historic wood (especially waterlogged), the aforementioned phenomena concerning moisture content and its influence on wood properties are magnified, particularly in the case of shrinkage. This is due to a commonly high degree of wood degradation but can also be altered due to the use of conservation agents (particularly PEG), which, although they stabilise wood dimensions, also increase its hygroscopicity leading to degradation or distortion of valuable artefacts (Schniewind
1990; Ljungdahl and Berglund
2007; Mortensen et al.
2007; Esteban et al.
2009,
2010; Vorobyev et al.
2017; Guo et al.
2018). The reduction in wood moisture sorption is thus essential for both industry and heritage conservation.
There are several strategies to reduce wood hygroscopicity (Skaar
1988; Hill
2006; Altgen et al.
2018). One of them is chemical modification. Molecules of the applied chemical partially block the potential sorption sites in the cell wall through covalent bonding with the hydroxyl groups of wood polymers. In addition, they can fill the nanopores in the cell wall (bulking), thus reducing the space for moisture (Donath et al.
2004; Hill
2006,
2008; Xie et al.
2011b). As a result, the cell walls become less sensitive to moisture and more dimensionally stable.
One family of chemicals that has been used for wood modification are organosilicon compounds. They have been applied mainly as binding agents, surface modifiers or additives for wood preservatives, increasing wood hydrophobicity, decreasing its biodegradability and flammability or reducing leachability of different chemicals (Donath et al.
2004,
2006a,
b; Hill et al.
2004; Kartal et al.
2009; Panov and Terziev
2009; Giudice and Canosa
2017; De Vetter et al.
2010). Owing to the fact that organosilicons can penetrate and bulk the cell wall, they also improve wood dimensional stability (Donath et al.
2004; Mai and Militz
2004; Xie et al.
2011a). Therefore, this group of chemicals has been chosen as potential stabilisers for waterlogged wood. The results of a previous study showed that some of the silanes can genuinely stabilise dimensions of archaeological waterlogged wooden objects upon drying (Broda et al.
2018,
2019a,
b). Among them, methyltrimethoxysilane (MTMS) proved to be particularly effective for wood differing in the degree of degradation (Broda and Mazela
2017; Broda et al.
2019b). The mechanism of stabilisation and the influence of the silane on the wood cell wall in the meaning of its porosity and moisture properties, which are important from the conservation point of view, have not been studied yet. It should be noted here, that MTMS, although effective in waterlogged wood stabilisation, has some disadvantages. First of all, it is hazardous for human health and relevant precautions must be taken during its application (Broda et al.
2019b). Moreover, this type of treatment, due to the chemical reactivity of the silane with wood, seems irreversible, which is against one of the key principles in wood conservation. Nevertheless, due to the fact that silane lodges itself in the cell wall and not in the cell lumina, a re-conservation of the silane-treated wood with different chemicals remains possible.
The aim of the presented study was to investigate the influence of methyltrimethoxysilane on the cell wall of waterlogged archaeological wood. A dynamic vapour sorption (DVS) analysis was carried out to analyse water vapour sorption behaviour of archaeological wood and investigate the effect of the silane treatment on its moisture properties. This method has been commonly used to determine sorption behaviour of natural fibres, including wood (Hill et al.
2009; Alix et al.
2009; Hill et al.
2010; Jalaludin et al.
2010; Xie et al.
2011b; Popescu et al.
2014; Ormondroyd et al.
2017a,
b). To characterise the cell wall microstructure, surface area and porosity measurements of untreated and treated wood were taken as these properties may help to elucidate both changes in water sorption and the mechanism of stabilisation.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.