Skip to main content
Top
Published in:

21-12-2022 | Technical Article

Effect of Microwave Hybrid Heating on High-Temperature Adhesive Wear Behavior of High-Velocity Oxygen Fuel-Sprayed WC-CrC-Ni and WC-Co/NiCrFeSiB Coatings

Authors: Subba Rao Medabalimi, M. R. Ananthu, Suresh Gudala, M. R. Ramesh

Published in: Journal of Materials Engineering and Performance | Issue 19/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

HVOF-processed coatings are chemically inhomogeneous and are not metallurgically bonded to the substrate. As a result, components coated with HVOF experience considerable material degradation during sliding wear. Microwave hybrid heating (MHH) is a novel surface modification technique for modifying the as-sprayed properties of the coating. Hence, this paper investigates and compares the wear and frictional behavior of HVOF as-sprayed coatings against MHH samples of WC-CrC-Ni and WC-Co/NiCrFeSiB coatings at elevated temperatures. MHH had a significant impact on wear rate and coefficient of friction by optimizing the porosity, integrated oxide phases and intersplat cohesion strength of the coatings. A modified domestic oven was used to perform MHH on HVOF-coated samples for 5 min at 1200 °C. Wear tests were performed using a pin-on-disk tribometer from room temperature to 200, 400, and 600 °C with Al2O3 disk as a counterface. SEM/EDS and XRD were utilized to examine the microstructural characterization of the coatings and substrate. Both the coatings showed higher wear resistance than the substrate at all temperatures. The WC-Co/NiCrFeSiB coating produced an oxide layer on the worn surfaces and integrated WC, CoWO4, and Fe2SiO4 splats, enhancing wear resistance. The MHH WC-CrC-Ni coating formed Cr2O3 and NiWO4 phases on the worn surfaces, increasing the intersplat cohesion strength between matrix and carbide splats, lowering the overall wear rate. After MHH, the wear rate of a substrate and WC-CrC-Ni coating was 3.5 and 1.12 times more at room temperature and 8.07 and 2.92 times more at 600 °C than WC-Co/NiCrFeSiB coating.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Somasundaram, R. Kadoli, M.R. Ramesh, and C.S. Ramesh, Evaluation of Thermocyclic Oxidation Behavior of HVOF Sprayed WC-CrC-Ni Coatings, Bonfring Int. J. Ind. Eng. Manag. Sci., 2015, 5(2), p 83–89. B. Somasundaram, R. Kadoli, M.R. Ramesh, and C.S. Ramesh, Evaluation of Thermocyclic Oxidation Behavior of HVOF Sprayed WC-CrC-Ni Coatings, Bonfring Int. J. Ind. Eng. Manag. Sci., 2015, 5(2), p 83–89.
2.
go back to reference M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, and B. Venkataraman, Solid Particle Erosion of HVOF Sprayed WC-Co/NiCrFeSiB Coatings, Wear, 2010, 269, p 197–205.CrossRef M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, and B. Venkataraman, Solid Particle Erosion of HVOF Sprayed WC-Co/NiCrFeSiB Coatings, Wear, 2010, 269, p 197–205.CrossRef
3.
go back to reference J. Pulsford, F. Venturi, S. Kamnis, and T. Hussain, Sliding Wear Behaviour of WC-Co Reinforced NiCrFeSiB HVOAF Thermal Spray Coatings Against WC-Co and Al2O3 Counterbodies, Surf. Coatings Technol., 2019, 2020, p 386. J. Pulsford, F. Venturi, S. Kamnis, and T. Hussain, Sliding Wear Behaviour of WC-Co Reinforced NiCrFeSiB HVOAF Thermal Spray Coatings Against WC-Co and Al2O3 Counterbodies, Surf. Coatings Technol., 2019, 2020, p 386.
4.
go back to reference D.G. Bhosale and W.S. Rathod, Tribological Behaviour of Atmospheric Plasma and High Velocity Oxy-Fuel Sprayed WC-Cr3C2-Ni Coatings at Elevated Temperatures, Ceram. Int., 2020, 46(8), p 12373–12385.CrossRef D.G. Bhosale and W.S. Rathod, Tribological Behaviour of Atmospheric Plasma and High Velocity Oxy-Fuel Sprayed WC-Cr3C2-Ni Coatings at Elevated Temperatures, Ceram. Int., 2020, 46(8), p 12373–12385.CrossRef
5.
go back to reference D.G. Bhosale, T.R. Prabhu, and W.S. Rathod, Sliding and Erosion Wear Behaviour of Thermal Sprayed WC-Cr3C2-Ni Coatings, Surf. Coatings Technol., 2020, 400(April), p 126192.CrossRef D.G. Bhosale, T.R. Prabhu, and W.S. Rathod, Sliding and Erosion Wear Behaviour of Thermal Sprayed WC-Cr3C2-Ni Coatings, Surf. Coatings Technol., 2020, 400(April), p 126192.CrossRef
6.
go back to reference S. Zafar and A.K. Sharma, Microstructure and Wear Performance of Heat Treated WC-12Co Microwave Clad, Vaccum, 2016, 131, p 213–222.CrossRef S. Zafar and A.K. Sharma, Microstructure and Wear Performance of Heat Treated WC-12Co Microwave Clad, Vaccum, 2016, 131, p 213–222.CrossRef
7.
go back to reference C.D. Prasad, S. Joladarashi, M.R. Ramesh, and M.S. Srinath, Microstructural and Tribological Resistance of Flame-Sprayed CoMoCrSi/WC-CrC-Ni and CoMoCrSi/WC-12Co Composite Coatings Remelted by Microwave Energy, J. Bio- Tribo-Corrosion, 2020, 6(4), p 1–15.CrossRef C.D. Prasad, S. Joladarashi, M.R. Ramesh, and M.S. Srinath, Microstructural and Tribological Resistance of Flame-Sprayed CoMoCrSi/WC-CrC-Ni and CoMoCrSi/WC-12Co Composite Coatings Remelted by Microwave Energy, J. Bio- Tribo-Corrosion, 2020, 6(4), p 1–15.CrossRef
8.
go back to reference D. Gupta and A.K. Sharma, Surface & Coatings Technology Development and Microstructural Characterization of Microwave Cladding on Austenitic Stainless Steel, Surf. Coat. Technol., 2011, 205(21–22), p 5147–5155.CrossRef D. Gupta and A.K. Sharma, Surface & Coatings Technology Development and Microstructural Characterization of Microwave Cladding on Austenitic Stainless Steel, Surf. Coat. Technol., 2011, 205(21–22), p 5147–5155.CrossRef
9.
go back to reference A. Bansal, S. Zafar, and A.K. Sharma, Microstructure and Abrasive Wear Performance of Ni-Wc Composite Microwave Clad, J. Mater. Eng. Perform, 2015, 24(10), p 3708–3716.CrossRef A. Bansal, S. Zafar, and A.K. Sharma, Microstructure and Abrasive Wear Performance of Ni-Wc Composite Microwave Clad, J. Mater. Eng. Perform, 2015, 24(10), p 3708–3716.CrossRef
10.
go back to reference C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Development and Sliding Wear Behavior of Co-Mo-Cr-Si Cladding through Microwave Heating, SILICON, 2019, 11(6), p 2975–2986.CrossRef C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Development and Sliding Wear Behavior of Co-Mo-Cr-Si Cladding through Microwave Heating, SILICON, 2019, 11(6), p 2975–2986.CrossRef
11.
go back to reference D. Gupta and A.K. Sharma, Investigation on Sliding Wear Performance of WC10Co2Ni Cladding Developed through Microwave Irradiation, Wear, 2011, 271(9–10), p 1642–1650.CrossRef D. Gupta and A.K. Sharma, Investigation on Sliding Wear Performance of WC10Co2Ni Cladding Developed through Microwave Irradiation, Wear, 2011, 271(9–10), p 1642–1650.CrossRef
12.
go back to reference R.R. Mishra and A.K. Sharma, Microwave-Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing, Compos. Part A Appl. Sci. Manuf., 2016, 81, p 78–97.CrossRef R.R. Mishra and A.K. Sharma, Microwave-Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing, Compos. Part A Appl. Sci. Manuf., 2016, 81, p 78–97.CrossRef
13.
go back to reference C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Effect of Microwave Heating on Microstructure and Elevated Temperature Adhesive Wear Behavior of HVOF Deposited CoMoCrSi-Cr3C2 Coating, Surf. Coatings Technol., 2018, 2019(374), p 291–304. C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Effect of Microwave Heating on Microstructure and Elevated Temperature Adhesive Wear Behavior of HVOF Deposited CoMoCrSi-Cr3C2 Coating, Surf. Coatings Technol., 2018, 2019(374), p 291–304.
14.
go back to reference B. Somasundaram, R. Kadoli, and M.R. Ramesh, Hot Corrosion Behaviour of HVOF Sprayed (Cr3C2–35% NiCr) + 5% Si Coatings in the Presence of Na2SO4–60% V2O5 at 700 °C, Trans. Indian Inst. Met., 2015, 68(2), p 257–268.CrossRef B. Somasundaram, R. Kadoli, and M.R. Ramesh, Hot Corrosion Behaviour of HVOF Sprayed (Cr3C2–35% NiCr) + 5% Si Coatings in the Presence of Na2SO4–60% V2O5 at 700 °C, Trans. Indian Inst. Met., 2015, 68(2), p 257–268.CrossRef
15.
go back to reference P. Suresh Babu, P. Chanikya Rao, A. Jyothirmayi, P. Sudharshan Phani, L. Rama Krishna, and D. Srinivasa Rao, Evaluation of Microstructure, Property and Performance of Detonation Sprayed WC-(W, Cr)2C-Ni Coatings, Surf. Coatings Technol., 2017, 2018(335), p 345–354. P. Suresh Babu, P. Chanikya Rao, A. Jyothirmayi, P. Sudharshan Phani, L. Rama Krishna, and D. Srinivasa Rao, Evaluation of Microstructure, Property and Performance of Detonation Sprayed WC-(W, Cr)2C-Ni Coatings, Surf. Coatings Technol., 2017, 2018(335), p 345–354.
16.
go back to reference L. Thakur and N. Arora, Solid Particle Erosion Behavior of WC-CoCr Nanostructured Coating, Tribol. Trans., 2013, 56(5), p 781–788.CrossRef L. Thakur and N. Arora, Solid Particle Erosion Behavior of WC-CoCr Nanostructured Coating, Tribol. Trans., 2013, 56(5), p 781–788.CrossRef
17.
go back to reference W. Fang, T.Y. Cho, J.H. Yoon, K.O. Song, S.K. Hur, S.J. Youn, and H.G. Chun, Processing Optimization, Surface Properties and Wear Behavior of HVOF Spraying WC-CrC-Ni Coating, J. Mater. Process. Technol., 2009, 209(7), p 3561–3567.CrossRef W. Fang, T.Y. Cho, J.H. Yoon, K.O. Song, S.K. Hur, S.J. Youn, and H.G. Chun, Processing Optimization, Surface Properties and Wear Behavior of HVOF Spraying WC-CrC-Ni Coating, J. Mater. Process. Technol., 2009, 209(7), p 3561–3567.CrossRef
18.
go back to reference H.J. Kim, S.Y. Hwang, C.H. Lee, and P. Juvanon, Assessment of Wear Performance of Flame Sprayed and Fused Ni-Based Coatings, Surf. Coatings Technol., 2003, 172(2–3), p 262–269.CrossRef H.J. Kim, S.Y. Hwang, C.H. Lee, and P. Juvanon, Assessment of Wear Performance of Flame Sprayed and Fused Ni-Based Coatings, Surf. Coatings Technol., 2003, 172(2–3), p 262–269.CrossRef
19.
go back to reference C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Influence of microwave hybrid heating on the sliding wear behaviour of HVOF sprayed CoMoCrSi coating, Mater. Res. Express, 2018, 5(8), p 086519.CrossRef C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Influence of microwave hybrid heating on the sliding wear behaviour of HVOF sprayed CoMoCrSi coating, Mater. Res. Express, 2018, 5(8), p 086519.CrossRef
20.
go back to reference C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Microstructure and Tribological Behavior of Flame Sprayed and Microwave Fused CoMoCrSi/CoMoCrSi-Cr3C2 Coatings, Mater. Res. Express, 2019, 6(2), p 026512.CrossRef C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Microstructure and Tribological Behavior of Flame Sprayed and Microwave Fused CoMoCrSi/CoMoCrSi-Cr3C2 Coatings, Mater. Res. Express, 2019, 6(2), p 026512.CrossRef
21.
go back to reference M.S. Rao, M.R. Ramesh, and R. Kadoli, Solid Particle Erosion Behavior of Partially Oxidized Al with NiCr Composite Coating at Elevated Temperature, J. Mater. Eng. Perform., 2021, 30, p 3749–3760.CrossRef M.S. Rao, M.R. Ramesh, and R. Kadoli, Solid Particle Erosion Behavior of Partially Oxidized Al with NiCr Composite Coating at Elevated Temperature, J. Mater. Eng. Perform., 2021, 30, p 3749–3760.CrossRef
22.
go back to reference G. Bolelli, A. Candeli, L. Lusvarghi, A. Ravaux, K. Cazes, A. Denoirjean, S. Valette, C. Chazelas, E. Meillot, and L. Bianchi, Tribology of NiCrAlY+Al2O3 Composite Coatings by Plasma Spraying with Hybrid Feeding of Dry Powder+Suspension, Wear, 2015, 344–345, p 69–85.CrossRef G. Bolelli, A. Candeli, L. Lusvarghi, A. Ravaux, K. Cazes, A. Denoirjean, S. Valette, C. Chazelas, E. Meillot, and L. Bianchi, Tribology of NiCrAlY+Al2O3 Composite Coatings by Plasma Spraying with Hybrid Feeding of Dry Powder+Suspension, Wear, 2015, 344–345, p 69–85.CrossRef
23.
go back to reference A. Kanno, K. Takagi, and M. Arai, Influence of Chemical Composition, Grain Size, and Spray Condition on Cavitation Erosion Resistance of High-Velocity Oxygen Fuel Thermal-Sprayed WC Cermet Coatings, Surf. Coatings Technol., 2019, 2020, p 394. A. Kanno, K. Takagi, and M. Arai, Influence of Chemical Composition, Grain Size, and Spray Condition on Cavitation Erosion Resistance of High-Velocity Oxygen Fuel Thermal-Sprayed WC Cermet Coatings, Surf. Coatings Technol., 2019, 2020, p 394.
24.
go back to reference B. Somasundaram, R. Kadoli, M.R. Ramesh, and C.S. Ramesh, High Temperature Corrosion Behaviour of HVOF Sprayed WC-CrC-Ni Coatings, Int. J. Surf. Sci. Eng., 2016, 10(4), p 400–413.CrossRef B. Somasundaram, R. Kadoli, M.R. Ramesh, and C.S. Ramesh, High Temperature Corrosion Behaviour of HVOF Sprayed WC-CrC-Ni Coatings, Int. J. Surf. Sci. Eng., 2016, 10(4), p 400–413.CrossRef
25.
go back to reference A. Valarezo, G. Bolelli, W.B. Choi, S. Sampath, V. Cannillo, L. Lusvarghi, and R. Rosa, Damage Tolerant Functionally Graded WC-Co/Stainless Steel HVOF Coatings, Surf. Coatings Technol., 2010, 205(7), p 2197–2208.CrossRef A. Valarezo, G. Bolelli, W.B. Choi, S. Sampath, V. Cannillo, L. Lusvarghi, and R. Rosa, Damage Tolerant Functionally Graded WC-Co/Stainless Steel HVOF Coatings, Surf. Coatings Technol., 2010, 205(7), p 2197–2208.CrossRef
26.
go back to reference K.R.R.M. Reddy, N. Ramanaiah, and M.M.M. Sarcar, Microstructural Evolution of the WC-Co/NiCrAlY Duplex Coating System on Ti6Al4V and Its Influence on Mechanical Properties, Procedia Mater. Sci., 2014, 5, p 326–334.CrossRef K.R.R.M. Reddy, N. Ramanaiah, and M.M.M. Sarcar, Microstructural Evolution of the WC-Co/NiCrAlY Duplex Coating System on Ti6Al4V and Its Influence on Mechanical Properties, Procedia Mater. Sci., 2014, 5, p 326–334.CrossRef
27.
go back to reference G. Singh and M. Kaur, High-Temperature Wear Behaviour of HVOF Sprayed 65% (NiCrSiFeBC ) − 35% (WC – Co ) Coating. Surf. Eng. 1–17 (2019) G. Singh and M. Kaur, High-Temperature Wear Behaviour of HVOF Sprayed 65% (NiCrSiFeBC ) − 35% (WC – Co ) Coating. Surf. Eng. 1–17 (2019)
28.
go back to reference S.R. Medabalimi, M.R. Ramesh, and R. Kadoli, Developing Partially Oxidized NiCr Coatings Using the Combined Flame Spray and Plasma Spray Process for Improved Wear Behaviour at High Temperature. Wear 1–11 (2021) S.R. Medabalimi, M.R. Ramesh, and R. Kadoli, Developing Partially Oxidized NiCr Coatings Using the Combined Flame Spray and Plasma Spray Process for Improved Wear Behaviour at High Temperature. Wear 1–11 (2021)
29.
go back to reference S. Du, Z. Li, Z. He, H. Ding, X. Wang, and Y. Zhang, Effect of Temperature on the Friction and Wear Behavior of Electroless Ni-P-MoS2-CaF2 Self-Lubricating Composite Coatings, Tribol. Int., 2018, 128(April), p 197–203.CrossRef S. Du, Z. Li, Z. He, H. Ding, X. Wang, and Y. Zhang, Effect of Temperature on the Friction and Wear Behavior of Electroless Ni-P-MoS2-CaF2 Self-Lubricating Composite Coatings, Tribol. Int., 2018, 128(April), p 197–203.CrossRef
30.
go back to reference F.H. Stott, High-Temperature Sliding Wear of Metals, Tribol. Int., 2002, 35(8), p 489–495.CrossRef F.H. Stott, High-Temperature Sliding Wear of Metals, Tribol. Int., 2002, 35(8), p 489–495.CrossRef
31.
go back to reference S.R. Medabalimi, M.R. Ramesh, and R. Kadoli, High-Temperature Solid Particle Erosion Behavior of Partially Oxidized NiCrBSiFe/NiCr Plasma Spray Coatings, J. Therm. Spray Technol., 2021, 30(6), p 1638–1652.CrossRef S.R. Medabalimi, M.R. Ramesh, and R. Kadoli, High-Temperature Solid Particle Erosion Behavior of Partially Oxidized NiCrBSiFe/NiCr Plasma Spray Coatings, J. Therm. Spray Technol., 2021, 30(6), p 1638–1652.CrossRef
32.
go back to reference M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, and B. Venkataraman, Solid Particle Erosion of HVOF Sprayed WC-Co/NiCrFeSiB Coatings, Wear, 2010, 269(3–4), p 197–205.CrossRef M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra, and B. Venkataraman, Solid Particle Erosion of HVOF Sprayed WC-Co/NiCrFeSiB Coatings, Wear, 2010, 269(3–4), p 197–205.CrossRef
33.
go back to reference F. Tomoyuki, Y. Ryohei, T. Keiichiro, and S. Yoshinobu, Analysis of the Early Stage of Stress Corrosion Cracking in Austenitic Stainless Steel by EBSD and XRD, Mater. Charact., 2021, 172, p 1–17. F. Tomoyuki, Y. Ryohei, T. Keiichiro, and S. Yoshinobu, Analysis of the Early Stage of Stress Corrosion Cracking in Austenitic Stainless Steel by EBSD and XRD, Mater. Charact., 2021, 172, p 1–17.
34.
go back to reference M. Makowska, P.V.W. Sasikumar, L. Hagelüken, D.F. Sanchez, N. Casati, F. Marone, G. Blugan, J. Brugger, and H. Van Swygenhoven, Cracks, Porosity and Microstructure of Ti Modified Polymer-Derived SiOC Revealed by Absorption-, XRD- and XRF-Contrast 2D and 3D Imaging, Acta Mater., 2020, 198, p 134–144.CrossRef M. Makowska, P.V.W. Sasikumar, L. Hagelüken, D.F. Sanchez, N. Casati, F. Marone, G. Blugan, J. Brugger, and H. Van Swygenhoven, Cracks, Porosity and Microstructure of Ti Modified Polymer-Derived SiOC Revealed by Absorption-, XRD- and XRF-Contrast 2D and 3D Imaging, Acta Mater., 2020, 198, p 134–144.CrossRef
35.
go back to reference D. Naragani, M.D. Sangid, P.A. Shade, J.C. Schuren, H. Sharma, J.S. Park, P. Kenesei, J.V. Bernier, T.J. Turner, and I. Parr, Investigation of Fatigue Crack Initiation from a Non-Metallic Inclusion via High Energy X-ray Diffraction Microscopy, Acta Mater., 2017, 137, p 71–84.CrossRef D. Naragani, M.D. Sangid, P.A. Shade, J.C. Schuren, H. Sharma, J.S. Park, P. Kenesei, J.V. Bernier, T.J. Turner, and I. Parr, Investigation of Fatigue Crack Initiation from a Non-Metallic Inclusion via High Energy X-ray Diffraction Microscopy, Acta Mater., 2017, 137, p 71–84.CrossRef
36.
go back to reference M.S.R. G, M.R. Ramesh, N.R. T, and J. N, Charactersation & Hot Corrosion Studies on Plasma Sprayed (WC-CO)/(CR 3 C 2 -NICR ) Coating on Titanium & Special Steel Alloys. Int. J. Mech. Eng. Technol. 9(5), 227–237 (2018) M.S.R. G, M.R. Ramesh, N.R. T, and J. N, Charactersation & Hot Corrosion Studies on Plasma Sprayed (WC-CO)/(CR 3 C 2 -NICR ) Coating on Titanium & Special Steel Alloys. Int. J. Mech. Eng. Technol. 9(5), 227–237 (2018)
37.
go back to reference A.L. Robertson and K.W. White, Microscale Fracture Mechanisms of a Cr3C2-NiCr HVOF Coating, Mater. Sci. Eng. A, 2017, 688, p 62–69.CrossRef A.L. Robertson and K.W. White, Microscale Fracture Mechanisms of a Cr3C2-NiCr HVOF Coating, Mater. Sci. Eng. A, 2017, 688, p 62–69.CrossRef
38.
go back to reference W. Zhou, K. Zhou, Y. Li, C. Deng, and K. Zeng, High Temperature Wear Performance of HVOF-Sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr Hardmetal Coatings, Appl. Surf. Sci., 2017, 416, p 33–44.CrossRef W. Zhou, K. Zhou, Y. Li, C. Deng, and K. Zeng, High Temperature Wear Performance of HVOF-Sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr Hardmetal Coatings, Appl. Surf. Sci., 2017, 416, p 33–44.CrossRef
39.
go back to reference S.H. Zhang, T.Y. Cho, J.H. Yoon, M.X. Li, P.W. Shum, and S.C. Kwon, Investigation on Microstructure, Surface Properties and Anti-Wear Performance of HVOF Sprayed WC-CrC-Ni Coatings Modified by Laser Heat Treatment, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 2009, 162(2), p 127–134.CrossRef S.H. Zhang, T.Y. Cho, J.H. Yoon, M.X. Li, P.W. Shum, and S.C. Kwon, Investigation on Microstructure, Surface Properties and Anti-Wear Performance of HVOF Sprayed WC-CrC-Ni Coatings Modified by Laser Heat Treatment, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 2009, 162(2), p 127–134.CrossRef
40.
go back to reference M. Aristizabal, L.C. Ardila, F. Veiga, M. Arizmendi, J. Fernandez, and J.M. Sánchez, Comparison of the Friction and Wear Behaviour of WC-Ni-Co-Cr and WC-Co Hardmetals in Contact with Steel at High Temperatures, Wear, 2012, 280–281, p 15–21.CrossRef M. Aristizabal, L.C. Ardila, F. Veiga, M. Arizmendi, J. Fernandez, and J.M. Sánchez, Comparison of the Friction and Wear Behaviour of WC-Ni-Co-Cr and WC-Co Hardmetals in Contact with Steel at High Temperatures, Wear, 2012, 280–281, p 15–21.CrossRef
41.
go back to reference C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Comparison of Microstructural and Sliding Wear Resistance of HVOF Coated and Microwave Treated CoMoCrSi-WC + CrC + Ni and CoMoCrSi-WC + 12Co Composite Coatings Deposited on Titanium Substrate, SILICON, 2020, 12(12), p 3027–3045.CrossRef C.D. Prasad, S. Joladarashi, M.R. Ramesh, M.S. Srinath, and B.H. Channabasappa, Comparison of Microstructural and Sliding Wear Resistance of HVOF Coated and Microwave Treated CoMoCrSi-WC + CrC + Ni and CoMoCrSi-WC + 12Co Composite Coatings Deposited on Titanium Substrate, SILICON, 2020, 12(12), p 3027–3045.CrossRef
42.
go back to reference W. Xiong, M. Ma, J. Zhang, and Y. Lian, The Effects of Cr2O3 Particles on the Microstructure and Wear-Resistant Properties of Electrodeposited CoNiP Coatings, Surf. Coatings Technol., 2019, 2020(381), p 125–167. W. Xiong, M. Ma, J. Zhang, and Y. Lian, The Effects of Cr2O3 Particles on the Microstructure and Wear-Resistant Properties of Electrodeposited CoNiP Coatings, Surf. Coatings Technol., 2019, 2020(381), p 125–167.
43.
go back to reference G. Zhang, J. Sun, and Q. Fu, Effect of Mullite on the Microstructure and Oxidation Behavior of Thermal-Sprayed MoSi2 Coating at 1500 °C, Ceram. Int., 2020, 46(8), p 10058–10066.CrossRef G. Zhang, J. Sun, and Q. Fu, Effect of Mullite on the Microstructure and Oxidation Behavior of Thermal-Sprayed MoSi2 Coating at 1500 °C, Ceram. Int., 2020, 46(8), p 10058–10066.CrossRef
44.
go back to reference G. Singh and M. Kaur, High-Temperature Wear Behaviour of HVOF Sprayed 65% (NiCrSiFeBC) − 35% (WC-Co) Coating, Surface Eng., 2020, 36(11), p 1139–1155.CrossRef G. Singh and M. Kaur, High-Temperature Wear Behaviour of HVOF Sprayed 65% (NiCrSiFeBC) − 35% (WC-Co) Coating, Surface Eng., 2020, 36(11), p 1139–1155.CrossRef
Metadata
Title
Effect of Microwave Hybrid Heating on High-Temperature Adhesive Wear Behavior of High-Velocity Oxygen Fuel-Sprayed WC-CrC-Ni and WC-Co/NiCrFeSiB Coatings
Authors
Subba Rao Medabalimi
M. R. Ananthu
Suresh Gudala
M. R. Ramesh
Publication date
21-12-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 19/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07756-7

Premium Partners