Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 3/2022

01-03-2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Effect of Milling on the Magnetic Properties of the Fe7S8 and Fe7Se8 Compounds

Authors: D. F. Akramov, N. V. Selezneva, P. N. G. Ibrahim, V. V. Maikov, E. M. Sherokalova, D. K. Kuznetsov, N. V. Baranov

Published in: Physics of Metals and Metallography | Issue 3/2022

Login to get access
share
SHARE

Abstratct

—X-ray diffraction, scanning electron microscopy, and magnetic measurements are used to study the structure and magnetic properties of layered ferrimagnetic Fe7S8 and Fe7Se8 compounds depending on the milling time in a ball mill. The milling is shown to lead to the abrupt decrease in the coherent domain size, increase in microstresses, suppression of magnetization anomalies related to low-temperature phase transformations, substantial decrease in the resulting magnetization, and nonmonotonic change in the coercive force. The observed changes in the behavior of magnetization are discussed taking into account the possible redistribution of vacancies in the cation layer in the course of mechanical treatment.
Literature
1.
go back to reference N. V. Baranov, E. G. Gerasimov, and N. V. Mushnikov, “Magnetism of compounds with a layered crystal structure,” Phys. Met. Metallogr. 112, 711–744 (2011). N. V. Baranov, E. G. Gerasimov, and N. V. Mushnikov, “Magnetism of compounds with a layered crystal structure,” Phys. Met. Metallogr. 112, 711–744 (2011).
2.
go back to reference N. V. Baranov, N. V. Selezneva, and V. A. Kazantsev, “Magnetism and superconductivity of transition metal chalcogenides,” Phys. Met. Metallogr. 119, 1301–1304 (2018). CrossRef N. V. Baranov, N. V. Selezneva, and V. A. Kazantsev, “Magnetism and superconductivity of transition metal chalcogenides,” Phys. Met. Metallogr. 119, 1301–1304 (2018). CrossRef
3.
go back to reference E. Morosan, H. W. Zandbergen, Li. Lu, Lee. Minhyea, J. G. Checkelsky, M. Heinrich, T. Siegrist, N. P. Ong, and R. J. Cava, “Sharp switching of the magnetization in Fe 1/4TaS 2,” Phys. Rev. B 75, 104401 (2009). CrossRef E. Morosan, H. W. Zandbergen, Li. Lu, Lee. Minhyea, J. G. Checkelsky, M. Heinrich, T. Siegrist, N. P. Ong, and R. J. Cava, “Sharp switching of the magnetization in Fe 1/4TaS 2,” Phys. Rev. B 75, 104401 (2009). CrossRef
4.
go back to reference Y. J. Choi, S. B. Kim, T. Asada, S. Park, Wu. Weida, Y. Horibe, and S.-W. Cheong, “Giant magnetic coercivity and ionic superlattice nano-domains in Fe 0.25TaS 2,” Europhys. Lett. 86, 37012 (2009). CrossRef Y. J. Choi, S. B. Kim, T. Asada, S. Park, Wu. Weida, Y. Horibe, and S.-W. Cheong, “Giant magnetic coercivity and ionic superlattice nano-domains in Fe 0.25TaS 2,” Europhys. Lett. 86, 37012 (2009). CrossRef
5.
go back to reference C.-W. Chen, S. Chikara, V. S. Zapf, and E. Morosan, “Correlations of crystallographic defects and anisotropy with magnetotransport properties in Fe xTaS 2 single crystals (0.23 < x < 0.35),” Phys. Rev. B 94, No. 5, 054406 (2016). CrossRef C.-W. Chen, S. Chikara, V. S. Zapf, and E. Morosan, “Correlations of crystallographic defects and anisotropy with magnetotransport properties in Fe xTaS 2 single crystals (0.23 < x < 0.35),” Phys. Rev. B 94, No. 5, 054406 (2016). CrossRef
6.
go back to reference H. Negishi, A. Shoube, H. Takahashi, Y. Ueda, M. Sasaki, and M. Inoue, “Magnetic properties of intercalation compounds M xTiS 2 (M = 3 d transition metal),” J. Magn. Magn. Mater. 67, 179–186 (1987). CrossRef H. Negishi, A. Shoube, H. Takahashi, Y. Ueda, M. Sasaki, and M. Inoue, “Magnetic properties of intercalation compounds M xTiS 2 (M = 3 d transition metal),” J. Magn. Magn. Mater. 67, 179–186 (1987). CrossRef
7.
go back to reference N. V. Baranov, E. M. Sherokalova, N. V. Selezneva, A. V. Proshkin, A. F. Gubkin, L. Keller, A. S. Volegov, and E. P. Proskurina, “Magnetic order, field-induced phase transitions and magnetoresistance in the intercalated compound Fe 0.5TiS 2,” J. Phys.: Condens. Matter 25, 066004 (2013). N. V. Baranov, E. M. Sherokalova, N. V. Selezneva, A. V. Proshkin, A. F. Gubkin, L. Keller, A. S. Volegov, and E. P. Proskurina, “Magnetic order, field-induced phase transitions and magnetoresistance in the intercalated compound Fe 0.5TiS 2,” J. Phys.: Condens. Matter 25, 066004 (2013).
8.
go back to reference N. V. Baranov, N. V. Selezneva, E. M. Sherokalova, Y. A. Baglaeva, A. S. Ovchinnikov, A. A. Tereshcheno, D. I. Gorbunov, and A. S. Volegov, “ Magnetic phase transitions, metastable states, and magnetic hysteresis in the antiferromagnetic compounds Fe 0.5TiS 2 – ySe y,” Phys. Rev. B 100, 024430 (2019). CrossRef N. V. Baranov, N. V. Selezneva, E. M. Sherokalova, Y. A. Baglaeva, A. S. Ovchinnikov, A. A. Tereshcheno, D. I. Gorbunov, and A. S. Volegov, “ Magnetic phase transitions, metastable states, and magnetic hysteresis in the antiferromagnetic compounds Fe 0.5TiS 2 – ySe y,” Phys. Rev. B 100, 024430 (2019). CrossRef
9.
go back to reference N. V. Selezneva, E. M. Sherokalova, A. S. Volegov, D. A. Shishkin, and N. V. Baranov, “Crystal structure, magnetic state and electrical resistivity of Fe 2/3Ti(S,Se) 2 as affected by anionic substitutions,” Mater. Res. Exp. 4, 106102 (2017). CrossRef N. V. Selezneva, E. M. Sherokalova, A. S. Volegov, D. A. Shishkin, and N. V. Baranov, “Crystal structure, magnetic state and electrical resistivity of Fe 2/3Ti(S,Se) 2 as affected by anionic substitutions,” Mater. Res. Exp. 4, 106102 (2017). CrossRef
10.
go back to reference N. V. Selezneva, N. V. Baranov, E. M. Sherokalova, A. S. Volegov, and A. A. Sherstobitov, “Multiple magnetic states and irreversibilities in the Fe xTiS 2 system,” Phys. Rev. B 104, 064411 (2021). CrossRef N. V. Selezneva, N. V. Baranov, E. M. Sherokalova, A. S. Volegov, and A. A. Sherstobitov, “Multiple magnetic states and irreversibilities in the Fe xTiS 2 system,” Phys. Rev. B 104, 064411 (2021). CrossRef
11.
go back to reference N. V. Selezneva, N. V. Baranov, E. M. Sherokalova, A. S. Volegov, and A. A. Sherstobitov, “Remnant magnetoresistance and virgin magnetic state in Fe 0.25TiS 2,” J. Magn. Magn. Mater. 519, 167480 (2021). CrossRef N. V. Selezneva, N. V. Baranov, E. M. Sherokalova, A. S. Volegov, and A. A. Sherstobitov, “Remnant magnetoresistance and virgin magnetic state in Fe 0.25TiS 2,” J. Magn. Magn. Mater. 519, 167480 (2021). CrossRef
12.
go back to reference H. Wang and I. Salveson, “A review on the mineral chemistry of the non-stoichiometric iron sulfide, Fe 1 ‒ xS (0 ≤ x ≤ 0.125): Polymorphs, phase relations and transitions, electronic and magnetic structures,” Phase Transitions 78, 547–567 (2005). CrossRef H. Wang and I. Salveson, “A review on the mineral chemistry of the non-stoichiometric iron sulfide, Fe 1 ‒ xS (0 ≤ x ≤ 0.125): Polymorphs, phase relations and transitions, electronic and magnetic structures,” Phase Transitions 78, 547–567 (2005). CrossRef
13.
go back to reference M. S. Bishwas, R. Das, and P. Poddar, “Large increase in the energy product of Fe 3Se 4 by Fe-site doping,” J. Phys. Chem. C 118, 4016–4022 (2014). CrossRef M. S. Bishwas, R. Das, and P. Poddar, “Large increase in the energy product of Fe 3Se 4 by Fe-site doping,” J. Phys. Chem. C 118, 4016–4022 (2014). CrossRef
14.
go back to reference I. Radelytskyi, P. Aleshkevych, D. J. Gawryluk, M. Berkowski, T. Zajarniuk, A. Szewczyk, M. Gutowska, L. Hawelek, P. Wlodarczyk, J. Fink-Finowicki, R. Minikayev, R. Diduszko, Y. Konopelnyk, M. Kozłowski, R. Puz’niak, and H. Szymczak, “Structural, magnetic, and magnetocaloric properties of Fe 7Se 8 single crystals,” J. Appl. Phys. 124, 143902 (2018). CrossRef I. Radelytskyi, P. Aleshkevych, D. J. Gawryluk, M. Berkowski, T. Zajarniuk, A. Szewczyk, M. Gutowska, L. Hawelek, P. Wlodarczyk, J. Fink-Finowicki, R. Minikayev, R. Diduszko, Y. Konopelnyk, M. Kozłowski, R. Puz’niak, and H. Szymczak, “Structural, magnetic, and magnetocaloric properties of Fe 7Se 8 single crystals,” J. Appl. Phys. 124, 143902 (2018). CrossRef
15.
go back to reference I. Letard, P. Sainctavit, and C. Deudon, “XMCD at Fe L 2, 3 edges, Fe and S K edges on Fe 7S 8,” Phys. Chem. Miner. 34, 113–120 (2007). CrossRef I. Letard, P. Sainctavit, and C. Deudon, “XMCD at Fe L 2, 3 edges, Fe and S K edges on Fe 7S 8,” Phys. Chem. Miner. 34, 113–120 (2007). CrossRef
16.
go back to reference A. V. Powell, P. Vaqueiro, K. S. Knight, L. C. Chapon, and R. D. Sánchez, “Structure and magnetism in synthetic pyrrhotite Fe 7S 8: A powder neutron-diffraction study,” Phys. Rev. B 70, 014415 (2004). CrossRef A. V. Powell, P. Vaqueiro, K. S. Knight, L. C. Chapon, and R. D. Sánchez, “Structure and magnetism in synthetic pyrrhotite Fe 7S 8: A powder neutron-diffraction study,” Phys. Rev. B 70, 014415 (2004). CrossRef
17.
go back to reference A. F. Andresen and J. Leciejewicz, “A neutron diffraction study of Fe 7Se 8,” J. Phys. (Paris) 25, 574–578 (1964). CrossRef A. F. Andresen and J. Leciejewicz, “A neutron diffraction study of Fe 7Se 8,” J. Phys. (Paris) 25, 574–578 (1964). CrossRef
18.
go back to reference D. Koulialias, B. Lesniak, M. Schwotzer, P. G. Weidler, J. F. Löffler, and A. U. Gehring, “The Besnus transition in single-domain 4C pyrrhotite,” Geochem., Geophys., Geosyst. 20, No. 11, 5216–5224 (2019). CrossRef D. Koulialias, B. Lesniak, M. Schwotzer, P. G. Weidler, J. F. Löffler, and A. U. Gehring, “The Besnus transition in single-domain 4C pyrrhotite,” Geochem., Geophys., Geosyst. 20, No. 11, 5216–5224 (2019). CrossRef
19.
go back to reference C. R. S. Haines, S. E. Dutton, M. W. R. Volk, and M. A. Carpenter, “Magnetoelastic properties and behaviour of 4C pyrrhotite, Fe 7S 8, through the Besnus transition,” J. Phys.: Condens. Matter 32, 405401 (2020). C. R. S. Haines, S. E. Dutton, M. W. R. Volk, and M. A. Carpenter, “Magnetoelastic properties and behaviour of 4C pyrrhotite, Fe 7S 8, through the Besnus transition,” J. Phys.: Condens. Matter 32, 405401 (2020).
20.
go back to reference D. Koulialias, E. Canevet, M. Charilaou, P. G. Weidler, J. F. Loffler, and A. U. Gehring, “The relation between local structural distortion and the low-temperature magnetic anomaly in Fe 7S 8,” J. Phys.: Condens. Matter 30, 425803 (2018). D. Koulialias, E. Canevet, M. Charilaou, P. G. Weidler, J. F. Loffler, and A. U. Gehring, “The relation between local structural distortion and the low-temperature magnetic anomaly in Fe 7S 8,” J. Phys.: Condens. Matter 30, 425803 (2018).
21.
go back to reference T. Kamimura, “On the Spin Axis Transition in Fe 7Se 8 (3c),” J. Phys. Soc. Jpn. 43, 1594–1599 (1977). CrossRef T. Kamimura, “On the Spin Axis Transition in Fe 7Se 8 (3c),” J. Phys. Soc. Jpn. 43, 1594–1599 (1977). CrossRef
22.
go back to reference Y. Konopelnyk, I. Radelytskyi, P. Iwanowski, D. J. Gawryluk, M. Berkowski, R. Diduszko, J. Fink-Finowicki, H. Szymczak, and R. Puzniak, “Combined pressure and magnetic-field induced caloric effects in Fe 7Se 8 single crystals,” J. Magn. Magn. 543, 168626 (2021). CrossRef Y. Konopelnyk, I. Radelytskyi, P. Iwanowski, D. J. Gawryluk, M. Berkowski, R. Diduszko, J. Fink-Finowicki, H. Szymczak, and R. Puzniak, “Combined pressure and magnetic-field induced caloric effects in Fe 7Se 8 single crystals,” J. Magn. Magn. 543, 168626 (2021). CrossRef
23.
go back to reference H. Zhang, G. Long, D. Li, R. Sabirianov, and H. Zeng, “Fe 3Se 4 nanostructures with giant coercivity synthesized by solution chemistry,” Chem. Mater. 23, 3769–3774 (2011). CrossRef H. Zhang, G. Long, D. Li, R. Sabirianov, and H. Zeng, “Fe 3Se 4 nanostructures with giant coercivity synthesized by solution chemistry,” Chem. Mater. 23, 3769–3774 (2011). CrossRef
24.
go back to reference G. Long, H. Zhang, D. Li, R. Sabirianov, Z. Zhang, and H. Zeng, “Magnetic anisotropy and coercivity of Fe 3Se 4 nanostructures,” Appl. Phys. Lett. 99, 202103 (2011). CrossRef G. Long, H. Zhang, D. Li, R. Sabirianov, Z. Zhang, and H. Zeng, “Magnetic anisotropy and coercivity of Fe 3Se 4 nanostructures,” Appl. Phys. Lett. 99, 202103 (2011). CrossRef
25.
go back to reference D. A. Clark, “Hysteresis properties of sized dispersed monoclinic pyrrhotite grains,” Geophys. Res. Lett. 11, No. 3, 173–176 (1984). CrossRef D. A. Clark, “Hysteresis properties of sized dispersed monoclinic pyrrhotite grains,” Geophys. Res. Lett. 11, No. 3, 173–176 (1984). CrossRef
26.
go back to reference W. O’Reilly, V. Hoffmann, A. C. Chouker, H. C. Soffel, and A. Menyeh, “Magnetic properties of synthetic analogues of pyrrhotite ore in the grain size range 1–24 μm,” Geophys. J. Int. 142, 669–683 (2000). CrossRef W. O’Reilly, V. Hoffmann, A. C. Chouker, H. C. Soffel, and A. Menyeh, “Magnetic properties of synthetic analogues of pyrrhotite ore in the grain size range 1–24 μm,” Geophys. J. Int. 142, 669–683 (2000). CrossRef
27.
go back to reference A. Menyeh and W. O’Reily, “The coercive force of fine particles of monoclinic pyrrhotite (Fe 7S 8) studied at elevated temperature,” Phys. Earth Planet. Inter. 89, 51–62 (1995). CrossRef A. Menyeh and W. O’Reily, “The coercive force of fine particles of monoclinic pyrrhotite (Fe 7S 8) studied at elevated temperature,” Phys. Earth Planet. Inter. 89, 51–62 (1995). CrossRef
28.
go back to reference S. B. Harris and R. P. Camata, “X-ray diffraction data and analysis to support phase identification in FeSe and Fe 7Se 8 epitaxial thin films,” J. Cryst. Growth 27, 104778 (2019). S. B. Harris and R. P. Camata, “X-ray diffraction data and analysis to support phase identification in FeSe and Fe 7Se 8 epitaxial thin films,” J. Cryst. Growth 27, 104778 (2019).
29.
go back to reference G. K. Williamson and W. H. Hall, “X-Ray line broadening from filed aluminium and wolfram,” Acta Metall. 1, 22–31 (1953). CrossRef G. K. Williamson and W. H. Hall, “X-Ray line broadening from filed aluminium and wolfram,” Acta Metall. 1, 22–31 (1953). CrossRef
30.
go back to reference M. J. Dekkers, “Grain-size dependence of the magnetic behavior of pyrrhotite during its low-temperature transition at 34 K,” Geophys. Res. Lett. 16, 855–858 (2014). CrossRef M. J. Dekkers, “Grain-size dependence of the magnetic behavior of pyrrhotite during its low-temperature transition at 34 K,” Geophys. Res. Lett. 16, 855–858 (2014). CrossRef
31.
go back to reference I. S. Lyubutin, C. R. Lin, K. O. Funtov, T. V. Dmitrieva, S. S. Starchikov, Y. J. Siao, and M. L. Chen, “Structural, magnetic, and electronic properties of iron selenide Fe6-7Se8 nanoparticles obtained by thermal decomposition in high-temperature organic solvents,” J. Chem. Phys. 141, 044704 (2014). CrossRef I. S. Lyubutin, C. R. Lin, K. O. Funtov, T. V. Dmitrieva, S. S. Starchikov, Y. J. Siao, and M. L. Chen, “Structural, magnetic, and electronic properties of iron selenide Fe6-7Se8 nanoparticles obtained by thermal decomposition in high-temperature organic solvents,” J. Chem. Phys. 141, 044704 (2014). CrossRef
Metadata
Title
Effect of Milling on the Magnetic Properties of the Fe7S8 and Fe7Se8 Compounds
Authors
D. F. Akramov
N. V. Selezneva
P. N. G. Ibrahim
V. V. Maikov
E. M. Sherokalova
D. K. Kuznetsov
N. V. Baranov
Publication date
01-03-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 3/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22030024