Skip to main content
Top
Published in: Glass and Ceramics 1-2/2020

25-05-2020

Effect of Molarity and Temperature of Alkaline Activator Solution on the Rheological Properties and Structure Formation of Alkali-Activated Refractory Materials

Authors: I. Pundiene, I. Pranckeviciene, Ch. Zhu

Published in: Glass and Ceramics | Issue 1-2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of the molarity (from 3.64 to 1.74 M) of an alkaline activator solution (AAS) and temperature (from 10 to 20°C) of a mixture of alkali-activated materials (AAM) based on chamotte and metakaolin on the rheological properties, structure development on solidification, and strength of samples after firing at temperatures 800 and 1000°C was studied. It was determined that reducing the molarity of AAS and raising the temperature reduces the viscosity of the AAM mixture. Increasing the molarity of AAS and the temperature of the mixture accelerates structure formation and increases the strength of samples from 8.8 to 22 MPa on solidification and from 6.8 to 20 MPa after firing at temperature 1000°C. The density of the samples after firing increases from 1270 to 1510 kg/m3, and water absorption decreases from 15.4 to 13.4%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. C. G. Juenger, F.Winnefeld, J. L. Provis, et al., “Advances in alternative cementitious binders,” Cement Concrete Res., 41, 1232 – 1243 (2011).CrossRef M. C. G. Juenger, F.Winnefeld, J. L. Provis, et al., “Advances in alternative cementitious binders,” Cement Concrete Res., 41, 1232 – 1243 (2011).CrossRef
2.
go back to reference G. Habert, J. B. d’Espinose de Lacaillerie, and N. Roussel, “An environmental evaluation of geopolymer based concrete production: reviewing current research trends,” J. Cleaner Prod., 19, 1229 – 1238 (2011).CrossRef G. Habert, J. B. d’Espinose de Lacaillerie, and N. Roussel, “An environmental evaluation of geopolymer based concrete production: reviewing current research trends,” J. Cleaner Prod., 19, 1229 – 1238 (2011).CrossRef
3.
go back to reference P. Duxson, A. Fernandez-Jimenez, J. L. Provis, et al., “Geopolymer technology: the current state of the art,” J. Mater. Sci., 42, 2917 – 2933 (2007).CrossRef P. Duxson, A. Fernandez-Jimenez, J. L. Provis, et al., “Geopolymer technology: the current state of the art,” J. Mater. Sci., 42, 2917 – 2933 (2007).CrossRef
4.
go back to reference Ch. Panagiotopoulou, E. Kontori, Th. Perraki, and G. Kakali, “Dissolution of aluminosilicate minerals and by-products in alkaline media,” J. Mater. Sci., 42, 2967 – 2973 (2007).CrossRef Ch. Panagiotopoulou, E. Kontori, Th. Perraki, and G. Kakali, “Dissolution of aluminosilicate minerals and by-products in alkaline media,” J. Mater. Sci., 42, 2967 – 2973 (2007).CrossRef
5.
go back to reference L. Weng, K. Sagoe-Crentsil, T. Brown, and S. Song, “Effects of aluminates on the formation of geopolymers,” Mater. Sci. Eng., 117, 163 – 168 (2005).CrossRef L. Weng, K. Sagoe-Crentsil, T. Brown, and S. Song, “Effects of aluminates on the formation of geopolymers,” Mater. Sci. Eng., 117, 163 – 168 (2005).CrossRef
6.
go back to reference Á. Palomo, S. Alonso, A. Fernández-Jiménez, et al., “Alkaline activation of fly ashes: NMR study of the reaction products,” J. Am. Ceram. Soc., 87, 1141 – 1145 (2004).CrossRef Á. Palomo, S. Alonso, A. Fernández-Jiménez, et al., “Alkaline activation of fly ashes: NMR study of the reaction products,” J. Am. Ceram. Soc., 87, 1141 – 1145 (2004).CrossRef
7.
go back to reference A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, “The role played by the reactive alumina content in the alkaline activation of fly ashes,” Micropor. Mesopor. Mater., 91, 111 – 119 (2006).CrossRef A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, “The role played by the reactive alumina content in the alkaline activation of fly ashes,” Micropor. Mesopor. Mater., 91, 111 – 119 (2006).CrossRef
8.
go back to reference J. Davidovits, “Geopolymers: inorganic polymeric new materials,” J. Thermal Anal., 37, 1633 – 1656 (1991).CrossRef J. Davidovits, “Geopolymers: inorganic polymeric new materials,” J. Thermal Anal., 37, 1633 – 1656 (1991).CrossRef
9.
go back to reference P. Duxson, G. C. Lukey, and J. S. J. V. Deventer, “The thermal evolution of metakaolin geopolymers: Part 2. Phase stability and structural development,” J. Non-Cryst. Solids, 353, 2186 – 2200 (2007).CrossRef P. Duxson, G. C. Lukey, and J. S. J. V. Deventer, “The thermal evolution of metakaolin geopolymers: Part 2. Phase stability and structural development,” J. Non-Cryst. Solids, 353, 2186 – 2200 (2007).CrossRef
10.
go back to reference C. Shi, A. F. Jiménez, and A. Palomo, “New cements for the 21st century: the pursuit of an alternative to Portland cement,” Cement Concrete Res., 41, 750 – 763 (2011).CrossRef C. Shi, A. F. Jiménez, and A. Palomo, “New cements for the 21st century: the pursuit of an alternative to Portland cement,” Cement Concrete Res., 41, 750 – 763 (2011).CrossRef
11.
go back to reference I. Ismail, S. A. Bernal, J. L. Provis, et al., “Microstructural changes in alkali activated fly ash/slag geopolymers; with sulfate exposure,” Mater. Struct., 46, 361 – 373 (2013).CrossRef I. Ismail, S. A. Bernal, J. L. Provis, et al., “Microstructural changes in alkali activated fly ash/slag geopolymers; with sulfate exposure,” Mater. Struct., 46, 361 – 373 (2013).CrossRef
12.
go back to reference Q. Wan, F. Rao, S. Song, et al., “Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios,” Cement Concrete Comp., 79, 45 – 52 (2017).CrossRef Q. Wan, F. Rao, S. Song, et al., “Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios,” Cement Concrete Comp., 79, 45 – 52 (2017).CrossRef
13.
go back to reference K. Vance, A. Dakhane, G. Sant, and N. Neithalath, “Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration,” Rheologica Acta, 53, 843 – 855 (2014).CrossRef K. Vance, A. Dakhane, G. Sant, and N. Neithalath, “Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration,” Rheologica Acta, 53, 843 – 855 (2014).CrossRef
14.
go back to reference A. Poulesquen, F. Frizon, and D. Lambertin, “Rheological behavior of alkali-activated metakaolin during geopolymerization,” J. Non-Cryst. Solids, 357, 3565 – 3571 (2013).CrossRef A. Poulesquen, F. Frizon, and D. Lambertin, “Rheological behavior of alkali-activated metakaolin during geopolymerization,” J. Non-Cryst. Solids, 357, 3565 – 3571 (2013).CrossRef
15.
go back to reference H. Xu and J. S. J. Van Deventer, “The geopolymerisation of aluminosilicate minerals,” Int. J. Mineral Proc., 59, 247 – 266 (2000).CrossRef H. Xu and J. S. J. Van Deventer, “The geopolymerisation of aluminosilicate minerals,” Int. J. Mineral Proc., 59, 247 – 266 (2000).CrossRef
16.
go back to reference N. Murayama, H. Yamamoto, and J. Shibata, “Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction,” Int. J. Mineral Proc., 64, 1 – 17 (2002).CrossRef N. Murayama, H. Yamamoto, and J. Shibata, “Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction,” Int. J. Mineral Proc., 64, 1 – 17 (2002).CrossRef
17.
go back to reference P. Nath and P. K. Sarker, “Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature,” Cement Concrete Comp., 55, 205 – 214 (2015).CrossRef P. Nath and P. K. Sarker, “Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature,” Cement Concrete Comp., 55, 205 – 214 (2015).CrossRef
18.
go back to reference H. Güllü, A. Cevik, K. M. A. Al-Ezzi, and M. E. Gülsan, “On the rheology of using geopolymer for grouting: A comparative study with cement-based grout included fly ash and cold bonded fly ash,” Constr. Build. Mater., 196, 594 – 610 (2019).CrossRef H. Güllü, A. Cevik, K. M. A. Al-Ezzi, and M. E. Gülsan, “On the rheology of using geopolymer for grouting: A comparative study with cement-based grout included fly ash and cold bonded fly ash,” Constr. Build. Mater., 196, 594 – 610 (2019).CrossRef
19.
go back to reference Z. Zhang, J. L. Provis, A. Reid, and H. Wang, “Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete,” Cement Concrete Comp., 62, 97 – 105 (2015).CrossRef Z. Zhang, J. L. Provis, A. Reid, and H. Wang, “Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete,” Cement Concrete Comp., 62, 97 – 105 (2015).CrossRef
20.
go back to reference M. Palacios, M. M. Alonso, C. Varga, and F. Puertas, “Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes,” Cement Concrete Comp., 95, 277 – 284 (2019).CrossRef M. Palacios, M. M. Alonso, C. Varga, and F. Puertas, “Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes,” Cement Concrete Comp., 95, 277 – 284 (2019).CrossRef
21.
go back to reference A. Favier, G. Habert, J. B. d’Espinose de Lacaillerie J, and N. Roussel, “Mechanical properties and compositional heterogeneities of fresh geopolymer pastes,” Cement Concrete Res., 48, 9 – 16 (2013). A. Favier, G. Habert, J. B. d’Espinose de Lacaillerie J, and N. Roussel, “Mechanical properties and compositional heterogeneities of fresh geopolymer pastes,” Cement Concrete Res., 48, 9 – 16 (2013).
22.
go back to reference D. Hardjito, C. C. Cheak, and C. H. L. Lee, “Strength and setting times of low calcium fly ash-based geopolymer mortar,” Modern Appl. Sci., 2, 3 – 11 (2008).CrossRef D. Hardjito, C. C. Cheak, and C. H. L. Lee, “Strength and setting times of low calcium fly ash-based geopolymer mortar,” Modern Appl. Sci., 2, 3 – 11 (2008).CrossRef
23.
go back to reference B. S. K. Reddy, J. Varaprasad, and K. N. K. Reddy, “Strength and workability of low lime fly-ash based geopolymer concrete,” Ind. J. Sci. Technol., 3, 1188–1189 (2010).CrossRef B. S. K. Reddy, J. Varaprasad, and K. N. K. Reddy, “Strength and workability of low lime fly-ash based geopolymer concrete,” Ind. J. Sci. Technol., 3, 1188–1189 (2010).CrossRef
24.
go back to reference F. A. Memon, M. F. Nuruddin, S. Khan, et al., “Effect of sodium hydroxide concentration on fresh properties and compressive strength of self-compacting geopolymer concrete,” J. Eng. Sci. Technol., 8, 44 – 56 (2013). F. A. Memon, M. F. Nuruddin, S. Khan, et al., “Effect of sodium hydroxide concentration on fresh properties and compressive strength of self-compacting geopolymer concrete,” J. Eng. Sci. Technol., 8, 44 – 56 (2013).
25.
go back to reference D.-W. Zhang, D. Wang, Z. Liu, and F. Xie, “Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content,” Constr. Build. Mater., 187, 674 – 680 (2018).CrossRef D.-W. Zhang, D. Wang, Z. Liu, and F. Xie, “Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content,” Constr. Build. Mater., 187, 674 – 680 (2018).CrossRef
26.
go back to reference R. Pouhet, M. Cyr, and R. Bucher, “Influence of the initial water content in flash calcined metakaolin-based geopolymer,” Constr. Build. Mater., 201, 421 – 429 (2019).CrossRef R. Pouhet, M. Cyr, and R. Bucher, “Influence of the initial water content in flash calcined metakaolin-based geopolymer,” Constr. Build. Mater., 201, 421 – 429 (2019).CrossRef
27.
go back to reference S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, et al., “Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends,” J. Mater. Sci., 46, 5477 – 5486 (2011).CrossRef S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, et al., “Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends,” J. Mater. Sci., 46, 5477 – 5486 (2011).CrossRef
28.
go back to reference R. P. Williams and A. van Riessen, “Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD,” Fuel, 89, 3683 – 3692 (2010).CrossRef R. P. Williams and A. van Riessen, “Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD,” Fuel, 89, 3683 – 3692 (2010).CrossRef
29.
go back to reference W. D. A. Rickard, J. Temuujin, and A. van Riessen, “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition,” J. Non-Cryst. Solids, 358, 1830 – 1839 (2012).CrossRef W. D. A. Rickard, J. Temuujin, and A. van Riessen, “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition,” J. Non-Cryst. Solids, 358, 1830 – 1839 (2012).CrossRef
30.
go back to reference Y. Zhao, J. Ye, X. Lu, et al., “Preparation of sintered foam materials by alkali-activated coal fly ash,” J. Hazardous Mater., 174, 108 – 112 (2010).CrossRef Y. Zhao, J. Ye, X. Lu, et al., “Preparation of sintered foam materials by alkali-activated coal fly ash,” J. Hazardous Mater., 174, 108 – 112 (2010).CrossRef
31.
go back to reference D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures,” Cement Concrete Res., 37, 1583 – 1589 (2007).CrossRef D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures,” Cement Concrete Res., 37, 1583 – 1589 (2007).CrossRef
32.
go back to reference P. Duxson, G. C. Lukey, S. J. Jannie, and J. S. J. van Deventer, “Physical evolution of Na-geopolymer derived from metakaolin up to 1000°C,” J. Mater. Sci., 42, 3044 – 3054 (2007).CrossRef P. Duxson, G. C. Lukey, S. J. Jannie, and J. S. J. van Deventer, “Physical evolution of Na-geopolymer derived from metakaolin up to 1000°C,” J. Mater. Sci., 42, 3044 – 3054 (2007).CrossRef
33.
go back to reference V. F. F. Barbosa and K. J. D. MacKenzie, “Synthesis and thermal behaviour of potassium sialate geopolymers,” Mater. Lett., 57, 1477 – 1482 (2003).CrossRef V. F. F. Barbosa and K. J. D. MacKenzie, “Synthesis and thermal behaviour of potassium sialate geopolymers,” Mater. Lett., 57, 1477 – 1482 (2003).CrossRef
34.
go back to reference J. L. Bell, P. E. Driemeyer, and W. M. Kriven, “Formation of ceramics from metakaolin-based geopolymers. Part II. K-based geopolymer,” J. Am. Ceram. Soc., 92, 607 – 615 (2009).CrossRef J. L. Bell, P. E. Driemeyer, and W. M. Kriven, “Formation of ceramics from metakaolin-based geopolymers. Part II. K-based geopolymer,” J. Am. Ceram. Soc., 92, 607 – 615 (2009).CrossRef
35.
go back to reference L. Dembovska, G. Bumanis, L. Vitola, and D. Bajare, “Influence of fillers on the alkali activated chamotte,” IOP Conf. Series: Mater. Sci. Eng. (2017). L. Dembovska, G. Bumanis, L. Vitola, and D. Bajare, “Influence of fillers on the alkali activated chamotte,” IOP Conf. Series: Mater. Sci. Eng. (2017).
36.
go back to reference F. Puertas, C. Varga, and M. M. Alonso, “Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution,” Cement Concrete Comp., 53, 279 – 288 (2014).CrossRef F. Puertas, C. Varga, and M. M. Alonso, “Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution,” Cement Concrete Comp., 53, 279 – 288 (2014).CrossRef
37.
go back to reference I. Tekin, “Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes,” Constr. Build. Mater., 127, 607 – 617 (2016).CrossRef I. Tekin, “Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes,” Constr. Build. Mater., 127, 607 – 617 (2016).CrossRef
38.
go back to reference S. Lee, A. van Riessen, and C.-M. Chon, “Benefits of sealedcuring on compressive strength of fly ash-based geopolymers,” Materials, 9, 598 (2016).CrossRef S. Lee, A. van Riessen, and C.-M. Chon, “Benefits of sealedcuring on compressive strength of fly ash-based geopolymers,” Materials, 9, 598 (2016).CrossRef
39.
go back to reference J. L. Provis, P. Duxson, J. S. J. Van Deventer, and G. C. Lukey, “The role of mathematical modelling and gel chemistry in advancing geopolymer technology,” Chem. Eng. Res. Design, 83, 853 – 860 (2005).CrossRef J. L. Provis, P. Duxson, J. S. J. Van Deventer, and G. C. Lukey, “The role of mathematical modelling and gel chemistry in advancing geopolymer technology,” Chem. Eng. Res. Design, 83, 853 – 860 (2005).CrossRef
40.
go back to reference T. Pyatina and T. Sugama, “Set controlling additive for thermal- shock resistant cement,” GRC Trans., 38, 251 – 257 (2014). T. Pyatina and T. Sugama, “Set controlling additive for thermal- shock resistant cement,” GRC Trans., 38, 251 – 257 (2014).
41.
go back to reference A. Fernández-Jiménez, J. Y. Pastor, A. Martýn, and A. Palomo, “High-temperature resistance in alkali-activated cement,” J. Am. Ceram. Soc., 93(10), 3411 – 3417 (2010).CrossRef A. Fernández-Jiménez, J. Y. Pastor, A. Martýn, and A. Palomo, “High-temperature resistance in alkali-activated cement,” J. Am. Ceram. Soc., 93(10), 3411 – 3417 (2010).CrossRef
Metadata
Title
Effect of Molarity and Temperature of Alkaline Activator Solution on the Rheological Properties and Structure Formation of Alkali-Activated Refractory Materials
Authors
I. Pundiene
I. Pranckeviciene
Ch. Zhu
Publication date
25-05-2020
Publisher
Springer US
Published in
Glass and Ceramics / Issue 1-2/2020
Print ISSN: 0361-7610
Electronic ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-020-00236-1

Other articles of this Issue 1-2/2020

Glass and Ceramics 1-2/2020 Go to the issue

Premium Partners