Skip to main content
Top
Published in: Physics of Metals and Metallography 5/2020

01-05-2020 | STRENGTH AND PLASTICITY

Effect of Multidirectional Forging on the Microstructure and Mechanical Properties of the Al–Mg–Mn–Cr Alloy

Authors: A. A. Kishchik, M. S. Kishchik, A. D. Kotov, A. V. Mikhaylovskaya

Published in: Physics of Metals and Metallography | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of multidirectional forging on the grain structure and parameters of secondary-phase particles in the Al–4.8Mg–1.2Mn–0.1Cr alloy has been investigated using the methods of the scanning and transmission electron microscopy. The multidirectional forging performed at a temperature of 350°C to a cumulative strain of 10.5 has resulted in a 1.5 decrease in average particle sizes of the manganese-bearing phases of crystallization origin and dispersoids and in the formation of a structure with a mean grain size of 1.7 µm. Multidirectional forging included in a sheet processing, in contrast to hot rolling, forms an equiaxed grain structure with a grain size of about 6 µm in recrystallized sheets and with enhanced strength characteristics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Z. Valiev, A. P. Zhilyaev., and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, New York, 2014). R. Z. Valiev, A. P. Zhilyaev., and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, New York, 2014).
2.
go back to reference S. V. Dobatkin, V. V. Zakharov, T. D. Rostova, N. A. Krasil’nikov, and E. N. Bastarash, “The formation of nano- and submicrocrystalline structures in the aluminum alloy D16 during severe plastic deformation,” Tekhnol. Legk. Spl. 1–2, 62–66 (2006). S. V. Dobatkin, V. V. Zakharov, T. D. Rostova, N. A. Krasil’nikov, and E. N. Bastarash, “The formation of nano- and submicrocrystalline structures in the aluminum alloy D16 during severe plastic deformation,” Tekhnol. Legk. Spl. 1–2, 62–66 (2006).
3.
go back to reference M. Murashkin, A. Medvedev, V. Kazykhanov, A. Krokhin, G. Raab, N. Enikeev, and R. Z. Valiev, “Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP-Conform,” Metals 5, 2148–2164 (2015).CrossRef M. Murashkin, A. Medvedev, V. Kazykhanov, A. Krokhin, G. Raab, N. Enikeev, and R. Z. Valiev, “Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP-Conform,” Metals 5, 2148–2164 (2015).CrossRef
4.
go back to reference M. Kawasaki, B. Ahn, P. Kumar, J. Jang, and T. G. Langdon, “Nano- and micro-mechanical properties of ultrafine-grained materials processed by severe plastic deformation techniques,” Adv. Eng. Mater. 19, 1–17 (2017).CrossRef M. Kawasaki, B. Ahn, P. Kumar, J. Jang, and T. G. Langdon, “Nano- and micro-mechanical properties of ultrafine-grained materials processed by severe plastic deformation techniques,” Adv. Eng. Mater. 19, 1–17 (2017).CrossRef
5.
go back to reference T. G. Langdon, “Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement,” Acta Mater. 61, 7035–7059 (2013).CrossRef T. G. Langdon, “Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement,” Acta Mater. 61, 7035–7059 (2013).CrossRef
6.
go back to reference T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014).CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014).CrossRef
7.
go back to reference R. R. Il’yasov, E. V. Avtokratova, A. D. Kotov, S. V. Krymskii, M. V. Markushev, A. V. Mikhailovskaya, and O. Sh. Sitdikov, “Influence of preliminary heat treatment on the structure and hardness of cryo-rolled and annealed D16 aluminum alloy,” Vestn. Tambov. Univ. Ser.: Est. Tekh. Nauki 21, 1033–1037 (2016). R. R. Il’yasov, E. V. Avtokratova, A. D. Kotov, S. V. Krymskii, M. V. Markushev, A. V. Mikhailovskaya, and O. Sh. Sitdikov, “Influence of preliminary heat treatment on the structure and hardness of cryo-rolled and annealed D16 aluminum alloy,” Vestn. Tambov. Univ. Ser.: Est. Tekh. Nauki 21, 1033–1037 (2016).
8.
go back to reference M. V. Markushev, “On the principles of the deformation methods of grain refinement in aluminum alloys to ultrafine size: II. Ultrafine-grained alloys,” Phys. Met. Metallogr. 108, 161–170 (2009).CrossRef M. V. Markushev, “On the principles of the deformation methods of grain refinement in aluminum alloys to ultrafine size: II. Ultrafine-grained alloys,” Phys. Met. Metallogr. 108, 161–170 (2009).CrossRef
9.
go back to reference G. A. Salishchev, R. M. Galeev, S. V. Zherebtsov, A. M. Smyslov, E. V. Safin, and M. M. Myshlyaev, “Mechanical properties of VT6 titanium alloy with microcrystalline and submicrocrystalline structures,” Metally, No. 6, 84–87 (1999). G. A. Salishchev, R. M. Galeev, S. V. Zherebtsov, A. M. Smyslov, E. V. Safin, and M. M. Myshlyaev, “Mechanical properties of VT6 titanium alloy with microcrystalline and submicrocrystalline structures,” Metally, No. 6, 84–87 (1999).
10.
go back to reference Y. Nakao and H. Miura, “Nano-grain evolution in austenitic stainless steel during multi-directional forging,” Mater. Sci. Eng., A 528, 1310–1317 (2011).CrossRef Y. Nakao and H. Miura, “Nano-grain evolution in austenitic stainless steel during multi-directional forging,” Mater. Sci. Eng., A 528, 1310–1317 (2011).CrossRef
11.
go back to reference A. Belyakov, T. Sakai, and H. Miura, “Microstructure and deformation behaviour of submicrocrystalline 304 stainless steel produced by severe plastic deformation,” Mater. Sci. Eng., A 319, 867–871 (2001).CrossRef A. Belyakov, T. Sakai, and H. Miura, “Microstructure and deformation behaviour of submicrocrystalline 304 stainless steel produced by severe plastic deformation,” Mater. Sci. Eng., A 319, 867–871 (2001).CrossRef
12.
go back to reference O. S. Sitdikov, E. V. Avtokratova, O. E. Mukhametdinova, R. N. Garipova, and M. V. Markushev, “Effect of the size of Al3(Sc,Zr) precipitates on the structure of multi-directionally isothermally forged Al–Mg–Sc–Zr alloy,” Phys. Met. Metallogr. 118, 1215–1224 (2017).CrossRef O. S. Sitdikov, E. V. Avtokratova, O. E. Mukhametdinova, R. N. Garipova, and M. V. Markushev, “Effect of the size of Al3(Sc,Zr) precipitates on the structure of multi-directionally isothermally forged Al–Mg–Sc–Zr alloy,” Phys. Met. Metallogr. 118, 1215–1224 (2017).CrossRef
13.
go back to reference A. Dziubinskaa, A. Gontarz, K. Horzelska, and P. Pieґsko, “The microstructure and mechanical properties of AZ31 magnesium alloy aircraft brackets produced by a new forging technology,” Procedia Manuf. 2, 337–341 (2015).CrossRef A. Dziubinskaa, A. Gontarz, K. Horzelska, and P. Pieґsko, “The microstructure and mechanical properties of AZ31 magnesium alloy aircraft brackets produced by a new forging technology,” Procedia Manuf. 2, 337–341 (2015).CrossRef
14.
go back to reference Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).CrossRef Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).CrossRef
15.
go back to reference P. N. Rao, D. Singh, and R. Jayaganthan, “Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature,” Mater. Des. 56, 97–104 (2014).CrossRef P. N. Rao, D. Singh, and R. Jayaganthan, “Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature,” Mater. Des. 56, 97–104 (2014).CrossRef
16.
go back to reference P. E. Armstrong, J. E. Hockett, and O. D. Sherby, “Large deformation of 1100 sluminum at 300 K,” J. Mech. Phys. Solids 30, 37–58 (1982).CrossRef P. E. Armstrong, J. E. Hockett, and O. D. Sherby, “Large deformation of 1100 sluminum at 300 K,” J. Mech. Phys. Solids 30, 37–58 (1982).CrossRef
17.
go back to reference J. Li, J. Liu, and Z. Cui, “Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing rate,” Mater. Sci. Eng., A 643, 32–36 (2015).CrossRef J. Li, J. Liu, and Z. Cui, “Microstructures and mechanical properties of AZ61 magnesium alloy after isothermal multidirectional forging with increasing rate,” Mater. Sci. Eng., A 643, 32–36 (2015).CrossRef
18.
go back to reference Q. Zhu, L. Li, C. Ban, Z. Zhao, Y. Zuo, and J. Cui, “Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature,” Trans. Nonferrous Met. Soc. China 24, 1301–1306 (2014).CrossRef Q. Zhu, L. Li, C. Ban, Z. Zhao, Y. Zuo, and J. Cui, “Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature,” Trans. Nonferrous Met. Soc. China 24, 1301–1306 (2014).CrossRef
19.
go back to reference A. K. Padap, G. P. Chaudhari, S. K. Nath, and V. Pancholi, “Ultrafine-grained steel fabricated using warm multiaxial forging: Microstructure and mechanical properties,” Mater. Sci. Eng., A 527, 110–117 (2009).CrossRef A. K. Padap, G. P. Chaudhari, S. K. Nath, and V. Pancholi, “Ultrafine-grained steel fabricated using warm multiaxial forging: Microstructure and mechanical properties,” Mater. Sci. Eng., A 527, 110–117 (2009).CrossRef
20.
go back to reference O. Sitdikov, R. Garipova, E. Avtokratova, O. Mukhametdinova, and M. Markushev, “Effect of temperature of isothermal multidirectional forging on microstructure development in the Al–Mg alloy with nano-size aluminides of Sc and Zr,” J. Alloys Compd. 746, 520–531 (2018).CrossRef O. Sitdikov, R. Garipova, E. Avtokratova, O. Mukhametdinova, and M. Markushev, “Effect of temperature of isothermal multidirectional forging on microstructure development in the Al–Mg alloy with nano-size aluminides of Sc and Zr,” J. Alloys Compd. 746, 520–531 (2018).CrossRef
21.
go back to reference S. Ringeva, D. Piot, C. Desrayaud, and J. H. Driver, “Texture and microtexture development in an Al–3Mg–Sc(Zr) alloy deformed by triaxial forging,” Acta Mater. 54, 3095–3105 (2006).CrossRef S. Ringeva, D. Piot, C. Desrayaud, and J. H. Driver, “Texture and microtexture development in an Al–3Mg–Sc(Zr) alloy deformed by triaxial forging,” Acta Mater. 54, 3095–3105 (2006).CrossRef
22.
go back to reference Y. Nakao, H. Miura, and T. Sakai, “Microstructural evolution and recrystallization behavior in copper multi-directionally forged at 77 K,” Adv. Mater. Res. 15, 649–654 (2007). Y. Nakao, H. Miura, and T. Sakai, “Microstructural evolution and recrystallization behavior in copper multi-directionally forged at 77 K,” Adv. Mater. Res. 15, 649–654 (2007).
23.
go back to reference F. Z. Utyashev and G. I. Raab, Deformation Methods of Production and Processing of Ultrafine-Grained and Nanostructured Materials Ufa, NIK Bashk. Entsikl., 2013 [in Russian]. F. Z. Utyashev and G. I. Raab, Deformation Methods of Production and Processing of Ultrafine-Grained and Nanostructured Materials Ufa, NIK Bashk. Entsikl., 2013 [in Russian].
24.
go back to reference M. Wang, L. Huang, W. Liu, Y. Ma, and B. Huang, “Influence of cumulative strain on microstructure and mechanical properties of multi-directional forged 2A14 aluminum alloy,” Mater. Sci. Eng., A 674, 40–51 (2016).CrossRef M. Wang, L. Huang, W. Liu, Y. Ma, and B. Huang, “Influence of cumulative strain on microstructure and mechanical properties of multi-directional forged 2A14 aluminum alloy,” Mater. Sci. Eng., A 674, 40–51 (2016).CrossRef
25.
go back to reference M. Hussain, P. N. Rao, D. Singh, R. Jayaganthan, and S. Singh, “Comparative study of microstructure and mechanical properties of Al 6063 alloy processed by multi axial forging at 77K and cryorolling,” Procedia Eng. 75, 129–133 (2014).CrossRef M. Hussain, P. N. Rao, D. Singh, R. Jayaganthan, and S. Singh, “Comparative study of microstructure and mechanical properties of Al 6063 alloy processed by multi axial forging at 77K and cryorolling,” Procedia Eng. 75, 129–133 (2014).CrossRef
26.
go back to reference F. J. Humphreys, “The nucleation of recrystallization at second phase particles in deformed aluminium,” Acta Metall. 25, 1323–1344 (1977).CrossRef F. J. Humphreys, “The nucleation of recrystallization at second phase particles in deformed aluminium,” Acta Metall. 25, 1323–1344 (1977).CrossRef
27.
go back to reference V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Strength and substructure of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets,” Phys. Met. Metallogr. 118, 407–414 (2017).CrossRef V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Strength and substructure of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets,” Phys. Met. Metallogr. 118, 407–414 (2017).CrossRef
28.
go back to reference A. A. Kishchik, A. D. Kotov and A. V. Mikhaylovskaya, “The microstructure and high-strain-rate superplasticity of the Al–Mg–Ni–Fe–Mn–Cr–Zr alloy,” Phys. Met. Metallogr. 120, 1006–1013 (2019).CrossRef A. A. Kishchik, A. D. Kotov and A. V. Mikhaylovskaya, “The microstructure and high-strain-rate superplasticity of the Al–Mg–Ni–Fe–Mn–Cr–Zr alloy,” Phys. Met. Metallogr. 120, 1006–1013 (2019).CrossRef
29.
go back to reference V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of structure and mechanical properties of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets after accumulated deformation during rolling,” Phys. Met. Metallogr. 117, 1163–1169 (2016).CrossRef V. S. Zolotorevskiy, R. I. Dobrojinskaja, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of structure and mechanical properties of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets after accumulated deformation during rolling,” Phys. Met. Metallogr. 117, 1163–1169 (2016).CrossRef
30.
go back to reference M. S. Kishchik, A. V. Mikhaylovskaya, A. D. Kotov, A. Mosleh, W. S. AbuShanab, and V. K. Portnoy, “Effect of multidirectional forging on the grain structure and mechanical properties of the Al–Mg–Mn alloy,” Materials 11, E2166 (2018).CrossRef M. S. Kishchik, A. V. Mikhaylovskaya, A. D. Kotov, A. Mosleh, W. S. AbuShanab, and V. K. Portnoy, “Effect of multidirectional forging on the grain structure and mechanical properties of the Al–Mg–Mn alloy,” Materials 11, E2166 (2018).CrossRef
31.
go back to reference A. V. Mikhaylovskaya, A. D. Kotov, M. S. Kishchik, A. S. Prosviryakov, and V. K. Portnoy, “The effect of isothermal multi-directional forging on the grain structure, superplasticity and mechanical properties of the conventional Al–Mg-based alloy,” Metals 9(1), 33 (2019).CrossRef A. V. Mikhaylovskaya, A. D. Kotov, M. S. Kishchik, A. S. Prosviryakov, and V. K. Portnoy, “The effect of isothermal multi-directional forging on the grain structure, superplasticity and mechanical properties of the conventional Al–Mg-based alloy,” Metals 9(1), 33 (2019).CrossRef
32.
go back to reference A. V. Mikhaylovskaya, V. K. Portnoy, A. G. Mochugovskiy, M. Yu. Zadorozhnyy, N. Yu. Tabachkova, and I. S. Golovin, “Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al–3% Mg–TM alloys (TM = Mn, Cr, Zr),” Mater. Des. 109, 197–208 (2016).CrossRef A. V. Mikhaylovskaya, V. K. Portnoy, A. G. Mochugovskiy, M. Yu. Zadorozhnyy, N. Yu. Tabachkova, and I. S. Golovin, “Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al–3% Mg–TM alloys (TM = Mn, Cr, Zr),” Mater. Des. 109, 197–208 (2016).CrossRef
33.
go back to reference A. Mochugovskiy, N. Tabachkova, and A. Mikhaylovskaya, “Annealing induced precipitation of nanoscale icosahedral quasicrystals in aluminum based alloy,” Mater. Lett. 247, 200–203 (2019).CrossRef A. Mochugovskiy, N. Tabachkova, and A. Mikhaylovskaya, “Annealing induced precipitation of nanoscale icosahedral quasicrystals in aluminum based alloy,” Mater. Lett. 247, 200–203 (2019).CrossRef
34.
go back to reference O. Engler, K. Kuhnke, and J. Hasenclever, “Development of intermetallic particles during solidification and homogenization of two AA 5xxx series Al–Mg alloys with different Mg contents,” J. Alloy. Compd. 728, 669–681 (2017).CrossRef O. Engler, K. Kuhnke, and J. Hasenclever, “Development of intermetallic particles during solidification and homogenization of two AA 5xxx series Al–Mg alloys with different Mg contents,” J. Alloy. Compd. 728, 669–681 (2017).CrossRef
35.
go back to reference O. Engler, G. Laptyeva, and N. Wang, “Impact of homogenization on microchemistry and recrystallization of the Al–Fe–Mn alloy AA 8006,” Mater. Charact. 79, 60–75 (2013).CrossRef O. Engler, G. Laptyeva, and N. Wang, “Impact of homogenization on microchemistry and recrystallization of the Al–Fe–Mn alloy AA 8006,” Mater. Charact. 79, 60–75 (2013).CrossRef
Metadata
Title
Effect of Multidirectional Forging on the Microstructure and Mechanical Properties of the Al–Mg–Mn–Cr Alloy
Authors
A. A. Kishchik
M. S. Kishchik
A. D. Kotov
A. V. Mikhaylovskaya
Publication date
01-05-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 5/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20050075

Other articles of this Issue 5/2020

Physics of Metals and Metallography 5/2020 Go to the issue