Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 12/2016

26-07-2016

Effect of multiple defects and substituted impurities on the band structure of graphene: a DFT study

Authors: K. Iyakutti, E. Mathan Kumar, Ranjit Thapa, R. Rajeswarapalanichamy, V. J. Surya, Y. Kawazoe

Published in: Journal of Materials Science: Materials in Electronics | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In graphene, band gap opening and tuning are important technological challenges for device applications. Various techniques have been suggested to this technologically complicated problem. Here, we present an ab initio study on the band gap opening in graphene through vacancy, adding impurity atom in the vacancy and substitutional co-doping. In the case of graphene with single vacancy a direct band gap of ~1 eV is obtained. This is a spin polarized state. The graphene system with two monovacancies gives rise to an effective indirect band gap (pseudo gap) of ~1 eV. The graphene substitutionally doped with B and N is co-doped (tri-doped) with S. This tri-doped graphene has turned into a semiconductor (band gap ~1 eV). These graphene semiconductors are better than the other semiconductor because of the presence of massless Dirac fermions in addition to normal electrons. This will have lot of application in device industry compared to a pristine graphene because of the presence of a gap and Dirac fermions. This type of band gap opening, with this type of defects and impurities, we are reporting for the first time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mat. 6, 181–183 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mat. 6, 181–183 (2007)CrossRef
2.
go back to reference W. Ren, H.-M. Cheng, The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014)CrossRef W. Ren, H.-M. Cheng, The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014)CrossRef
3.
go back to reference Things you could do with graphene. Nat. Nanatechnol. 9, 737 (2014) Things you could do with graphene. Nat. Nanatechnol. 9, 737 (2014)
4.
go back to reference K. Kostarelos, K.S. Novoselov, Graphene devices for life. Nat. Nanotechnol. 9, 744–745 (2014)CrossRef K. Kostarelos, K.S. Novoselov, Graphene devices for life. Nat. Nanotechnol. 9, 744–745 (2014)CrossRef
5.
go back to reference E.J. Siochi, Graphene in the sky and beyond. Nat. Nanotechnol. 9, 745–747 (2014)CrossRef E.J. Siochi, Graphene in the sky and beyond. Nat. Nanotechnol. 9, 745–747 (2014)CrossRef
6.
7.
go back to reference Y.-C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D.G. de Oteyza, F.R. Fischer, S.G. Louie, M.F. Crommie, Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015)CrossRef Y.-C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D.G. de Oteyza, F.R. Fischer, S.G. Louie, M.F. Crommie, Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015)CrossRef
8.
go back to reference Ten years in two dimensions. Nat. Nanotechnol. 9, 725 (2014) Ten years in two dimensions. Nat. Nanotechnol. 9, 725 (2014)
9.
go back to reference F. Withers, M. Dubois, A.K. Savchenko, Electron properties of fluorinated single-layer graphene transistors. Phys. Rev. B 82, 073403–073407 (2010)CrossRef F. Withers, M. Dubois, A.K. Savchenko, Electron properties of fluorinated single-layer graphene transistors. Phys. Rev. B 82, 073403–073407 (2010)CrossRef
10.
go back to reference M. Dvorak, W. Oswald, Z. Wu, Band gap opening by patterning graphene. Sci. Rep. 3, 2289 (2013)CrossRef M. Dvorak, W. Oswald, Z. Wu, Band gap opening by patterning graphene. Sci. Rep. 3, 2289 (2013)CrossRef
11.
go back to reference A.A. Castellanos-Gomez, B.J. Van Wees, Band gap opening of graphene by noncovalent pi–pi interaction with porphyrins. Graphene 2, 102–108 (2013)CrossRef A.A. Castellanos-Gomez, B.J. Van Wees, Band gap opening of graphene by noncovalent pi–pi interaction with porphyrins. Graphene 2, 102–108 (2013)CrossRef
12.
go back to reference S.M. Kozlov, F. Vines, A. Gorling, Bandgap engineering of graphene by physisorbed adsorbates. Adv. Mater. 23, 2638–2643 (2011)CrossRef S.M. Kozlov, F. Vines, A. Gorling, Bandgap engineering of graphene by physisorbed adsorbates. Adv. Mater. 23, 2638–2643 (2011)CrossRef
13.
go back to reference E.F. Sheka, The uniqueness of physical and chemical natures of graphene: their coherence and conflicts. Int. J. Quantum Chem. 114, 1079–1095 (2014)CrossRef E.F. Sheka, The uniqueness of physical and chemical natures of graphene: their coherence and conflicts. Int. J. Quantum Chem. 114, 1079–1095 (2014)CrossRef
14.
go back to reference M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene. Nano Today 6, 42–60 (2011)CrossRef M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene. Nano Today 6, 42–60 (2011)CrossRef
15.
go back to reference V.J. Surya, K. Iyakutti, H. Mizuseki, Y. Kawazoe, Tuning electronic structure of graphene: a first-principles study. IEEE Trans. Nanotechnol. 11, 534–541 (2012)CrossRef V.J. Surya, K. Iyakutti, H. Mizuseki, Y. Kawazoe, Tuning electronic structure of graphene: a first-principles study. IEEE Trans. Nanotechnol. 11, 534–541 (2012)CrossRef
16.
go back to reference B.-R. Wu, C.-K. Yang, Electronic structure of graphene with vacancies and graphene adsorbed with fluorine atoms. AIP Adv. 2, 012173 (2012)CrossRef B.-R. Wu, C.-K. Yang, Electronic structure of graphene with vacancies and graphene adsorbed with fluorine atoms. AIP Adv. 2, 012173 (2012)CrossRef
17.
go back to reference R. Faccio, L. Fernández-Werner, H. Pardo, C. Goyenola, O.N. Ventura, Á.W. Mombrú, Electronic and structural distortions in graphene induced by carbon vacancies and boron doping. J. Phys. Chem. C 114, 18961–18971 (2010)CrossRef R. Faccio, L. Fernández-Werner, H. Pardo, C. Goyenola, O.N. Ventura, Á.W. Mombrú, Electronic and structural distortions in graphene induced by carbon vacancies and boron doping. J. Phys. Chem. C 114, 18961–18971 (2010)CrossRef
18.
go back to reference A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
19.
go back to reference D.W. Boukhvalov, M.I. Katsnelson, Chemical functionalization of graphene. J. Phys. Condens. Matter 21, 344205–344217 (2009)CrossRef D.W. Boukhvalov, M.I. Katsnelson, Chemical functionalization of graphene. J. Phys. Condens. Matter 21, 344205–344217 (2009)CrossRef
20.
go back to reference R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)CrossRef R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)CrossRef
21.
go back to reference S.H. Cheng, K. Zou, F. Okino, H.R. Gutierrez, A. Gupta, N. Shen, P.C. Eklund, J.O. Sofo, J. Zhu, Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 81, 205435–205440 (2010)CrossRef S.H. Cheng, K. Zou, F. Okino, H.R. Gutierrez, A. Gupta, N. Shen, P.C. Eklund, J.O. Sofo, J. Zhu, Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 81, 205435–205440 (2010)CrossRef
22.
go back to reference R.M. Guzmán-Arellano, A.D. Hernández-Nieves, C.A. Balseiro, G. Usaj, Diffusion of fluorine adatoms on doped graphene, top of formbottom of form. Appl. Phys. Lett. 105, 121606 (2014)CrossRef R.M. Guzmán-Arellano, A.D. Hernández-Nieves, C.A. Balseiro, G. Usaj, Diffusion of fluorine adatoms on doped graphene, top of formbottom of form. Appl. Phys. Lett. 105, 121606 (2014)CrossRef
23.
go back to reference Y. Tang, Z. Yang, X. Dai, Trapping of metal atoms in the defects on graphene. J. Chem. Phys. 135, 224704 (2011)CrossRef Y. Tang, Z. Yang, X. Dai, Trapping of metal atoms in the defects on graphene. J. Chem. Phys. 135, 224704 (2011)CrossRef
24.
go back to reference R. Martinazzo, S. Casolo, G.F. Tantardini, The effect of atomic-scale defects and dopants on graphene electronic structure. arXiv:1104.1302v1 [cond-mat.mtrl-sci] (2011) R. Martinazzo, S. Casolo, G.F. Tantardini, The effect of atomic-scale defects and dopants on graphene electronic structure. arXiv:1104.1302v1 [cond-mat.mtrl-sci] (2011)
25.
go back to reference S.H.M. Jafri et al., Conductivity engineering of graphene by defect formation. J. Phys. D Appl. Phys. 43, 045404 (2010)CrossRef S.H.M. Jafri et al., Conductivity engineering of graphene by defect formation. J. Phys. D Appl. Phys. 43, 045404 (2010)CrossRef
26.
go back to reference R. Faccio, A. W. Mombrú, Stability of multivacancies in graphene. arXiv:1312.5015v1[cond-mat.mtrl-sci] (2013) R. Faccio, A. W. Mombrú, Stability of multivacancies in graphene. arXiv:1312.5015v1[cond-mat.mtrl-sci] (2013)
27.
go back to reference A.V. Krasheninnikov, R.M. Nieminen, Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study. Theor. Chem. Acc. 129, 625–630 (2011)CrossRef A.V. Krasheninnikov, R.M. Nieminen, Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study. Theor. Chem. Acc. 129, 625–630 (2011)CrossRef
28.
go back to reference H. Amara, S. Latil, V. Meunier, Ph Lambin, J.C. Charlier, Scanning tunneling microscopy fingerprints of point defects in graphene: a theoretical prediction. Phys. Rev. B 76, 115423-1–115423-10 (2007)CrossRef H. Amara, S. Latil, V. Meunier, Ph Lambin, J.C. Charlier, Scanning tunneling microscopy fingerprints of point defects in graphene: a theoretical prediction. Phys. Rev. B 76, 115423-1–115423-10 (2007)CrossRef
29.
go back to reference Z. Hou, K. Terakura, Effect of nitrogen doping on the migration of the carbon adatom and monovacancy in graphene. J. Phys. Chem. C 119, 4922–4933 (2015)CrossRef Z. Hou, K. Terakura, Effect of nitrogen doping on the migration of the carbon adatom and monovacancy in graphene. J. Phys. Chem. C 119, 4922–4933 (2015)CrossRef
30.
go back to reference M. Wu, C. Cao, J.Z. Jiang, Light non-metallic atom (b, n, o and f)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010)CrossRef M. Wu, C. Cao, J.Z. Jiang, Light non-metallic atom (b, n, o and f)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010)CrossRef
31.
go back to reference T.P. Kaloni, Y.C. Cheng, U. Schwingenschlögl, Fluorinated monovacancies in graphene: even–odd effect. EPL 100, 37003 (2012)CrossRef T.P. Kaloni, Y.C. Cheng, U. Schwingenschlögl, Fluorinated monovacancies in graphene: even–odd effect. EPL 100, 37003 (2012)CrossRef
32.
go back to reference F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2011)CrossRef F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2011)CrossRef
33.
go back to reference B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Controllable N-doping of graphene. Nano Lett. 10, 4975–4980 (2010)CrossRef B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Controllable N-doping of graphene. Nano Lett. 10, 4975–4980 (2010)CrossRef
34.
go back to reference V.M. Pereira, F. Guinea, J.M.B. Lopes dos Santos, N.M.R. Peres, A.H.C. Neto, Disorder induced localized states in graphene. Phys. Rev. Lett. 96, 036801-1–036801-4 (2006) V.M. Pereira, F. Guinea, J.M.B. Lopes dos Santos, N.M.R. Peres, A.H.C. Neto, Disorder induced localized states in graphene. Phys. Rev. Lett. 96, 036801-1–036801-4 (2006)
35.
go back to reference M.W.C. Dharma-Wardana, M.Z. Zgierski, Magnetism and structure at vacant lattice sites in graphene. Phys. E 41, 80–83 (2008)CrossRef M.W.C. Dharma-Wardana, M.Z. Zgierski, Magnetism and structure at vacant lattice sites in graphene. Phys. E 41, 80–83 (2008)CrossRef
36.
go back to reference G. Kresse, J. Hafner, Ab-initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)CrossRef G. Kresse, J. Hafner, Ab-initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)CrossRef
37.
go back to reference G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)CrossRef G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)CrossRef
38.
go back to reference K. Iyakutti, V.J. Surya, Y. Kawazoe, AIP Conf. Proc. 1447, 293–294 (2012)CrossRef K. Iyakutti, V.J. Surya, Y. Kawazoe, AIP Conf. Proc. 1447, 293–294 (2012)CrossRef
39.
go back to reference J.-S. Park, H.J. Choi, Band-gap opening in graphene: a reverse-engineering approach. Phys. Rev. B 92, 045402 (2015)CrossRef J.-S. Park, H.J. Choi, Band-gap opening in graphene: a reverse-engineering approach. Phys. Rev. B 92, 045402 (2015)CrossRef
40.
go back to reference T.T. Jia, M.M. Zheng, X.Y. Fan, Y. Su, S.-J. Li, H.-Y. Liu, G. Chen, Y. Kawazoe, Dirac cone move and bandgap on/off switching of graphene superlattice. Sci. Rep. 6, 18869 (2016). doi:10.1038/srep18869 CrossRef T.T. Jia, M.M. Zheng, X.Y. Fan, Y. Su, S.-J. Li, H.-Y. Liu, G. Chen, Y. Kawazoe, Dirac cone move and bandgap on/off switching of graphene superlattice. Sci. Rep. 6, 18869 (2016). doi:10.​1038/​srep18869 CrossRef
41.
go back to reference H.I. Sirikumara, E. Putz, M. Al-Abboodi, T. Jayasekera, Symmetry induced semimetalsemiconductor transition in doped graphene. Sci. Rep. 6, 19115 (2016). doi:10.1038/srep19115 CrossRef H.I. Sirikumara, E. Putz, M. Al-Abboodi, T. Jayasekera, Symmetry induced semimetalsemiconductor transition in doped graphene. Sci. Rep. 6, 19115 (2016). doi:10.​1038/​srep19115 CrossRef
42.
go back to reference M. Dvorak, Z. Wu, Dirac point movement and topological phase transition in patterned graphene. Nanoscale 7, 3645 (2015)CrossRef M. Dvorak, Z. Wu, Dirac point movement and topological phase transition in patterned graphene. Nanoscale 7, 3645 (2015)CrossRef
43.
go back to reference S.T. Skowron, I.V. Lebedeva, A.M. Popov, E. Bichoutskaia, Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev. 44, 3143–3176 (2015)CrossRef S.T. Skowron, I.V. Lebedeva, A.M. Popov, E. Bichoutskaia, Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev. 44, 3143–3176 (2015)CrossRef
44.
go back to reference L. Li, S. Reich, J. Robertson, Defect energies of graphite: density-functional calculations. Phys. Rev. B 72, 84109 (2005) L. Li, S. Reich, J. Robertson, Defect energies of graphite: density-functional calculations. Phys. Rev. B 72, 84109 (2005)
45.
go back to reference K. Iyakutti, E. Mathan Kumar, I. Lakshmi, R. Thapa, R. Rajeswarapalanichamy, V.J. Surya, Y. Kawazoe, Effect of surface doping on the band structure of graphene: a DFT study. J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-4083-z K. Iyakutti, E. Mathan Kumar, I. Lakshmi, R. Thapa, R. Rajeswarapalanichamy, V.J. Surya, Y. Kawazoe, Effect of surface doping on the band structure of graphene: a DFT study. J. Mater. Sci. Mater. Electron. (2015). doi:10.​1007/​s10854-015-4083-z
Metadata
Title
Effect of multiple defects and substituted impurities on the band structure of graphene: a DFT study
Authors
K. Iyakutti
E. Mathan Kumar
Ranjit Thapa
R. Rajeswarapalanichamy
V. J. Surya
Y. Kawazoe
Publication date
26-07-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 12/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5401-9

Other articles of this Issue 12/2016

Journal of Materials Science: Materials in Electronics 12/2016 Go to the issue