Skip to main content
Top
Published in: Polymer Bulletin 6/2015

01-06-2015 | Original Paper

Effect of nanoparticle SiO2 grafted poly (methyl methacrylate) on poly(l-lactic) acid crystallization

Authors: Tomoko Shirahase, Moriya Kikuchi, Takamichi Shinohara, Motoyasu Kobayashi, Atsushi Takahara

Published in: Polymer Bulletin | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For practical applications of poly(l-lactic acid) (PLLA), PLLA crystallization with keeping transparency is preferable. As one method to keep transparency without inhibiting crystallization, we prepared SiO2 nanoparticles which were modified with poly (methyl methacrylate) (PMMA-g-SiO2). FT-IR and TG–DTA measurement indicated that PMMA was grafted on SiO2 surface successfully. TG–DTA and GPC measurement of free PMMA cleaved from PMMA-g-SiO2 determined graft density of PMMA as 0.039 chains/nm2. The effect of PMMA-g-SiO2 on PLLA crystallization was characterized by DSC measurement and POM observation. Although PMMA-g-SiO2 could not promote PLLA crystallization significantly like commercial crystal nuclear agents, it did not inhibit PLLA crystallization. By UV measurement and Haze meter, it was indicated that crystallized PLLA with PMMA-g-SiO2 generated 3.5–5.3 times higher transparency than crystallized PLLA with/without commercial nucleating agent. TEM observation indicated that the aggregation size of PMMA-g-SiO2 was 21.7 ± 13.9 nm which was smaller than visible wavelength. Transparency improvement likely resulted from size-reduced aggregation of PMMA-g-SiO2 in PLLA matrix. On the other hand, PMMA-g-SiO2 made size of generated spherulite smaller but increased its number in PLLA matrix, which inhibited transparency improvement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32:455–482CrossRef Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32:455–482CrossRef
2.
go back to reference Lim LT, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33:820–852CrossRef Lim LT, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33:820–852CrossRef
3.
go back to reference Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747CrossRef Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747CrossRef
4.
go back to reference Fundador NGV, Enomoto-Rogers Y, Takemura A, Iwata T (2013) Xylan esters as bio-based nucleating agents for poly(l-lactic acid). Polym Degrad Stab 98:1064–1071CrossRef Fundador NGV, Enomoto-Rogers Y, Takemura A, Iwata T (2013) Xylan esters as bio-based nucleating agents for poly(l-lactic acid). Polym Degrad Stab 98:1064–1071CrossRef
5.
go back to reference Kim Y, Jung R, Kim HS, Jin HJ (2009) Transparent nanocomposites prepared by incorporating microbial nanofibrils into poly(l-lactic acid). Curr Appl Phys 9:s69–s71CrossRef Kim Y, Jung R, Kim HS, Jin HJ (2009) Transparent nanocomposites prepared by incorporating microbial nanofibrils into poly(l-lactic acid). Curr Appl Phys 9:s69–s71CrossRef
6.
go back to reference Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155CrossRef Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155CrossRef
7.
go back to reference Nakajima H, Takahashi M, Kimura Y (2010) Induced crystallization of PLLA in the presence of 1,3,5-benzenetricarboxylamide derivatives as nucelators: preparation of haze-free crystalline PLLA materials. Macromol Mater Eng 295:460–468 Nakajima H, Takahashi M, Kimura Y (2010) Induced crystallization of PLLA in the presence of 1,3,5-benzenetricarboxylamide derivatives as nucelators: preparation of haze-free crystalline PLLA materials. Macromol Mater Eng 295:460–468
8.
go back to reference Tsuji H, Tashiro K, Bouapao L, Narita J (2008) Polyglycolide as a biodegradable nucleating agent for Poly(l-lactide). Macromol Mater Eng 293:947–951CrossRef Tsuji H, Tashiro K, Bouapao L, Narita J (2008) Polyglycolide as a biodegradable nucleating agent for Poly(l-lactide). Macromol Mater Eng 293:947–951CrossRef
9.
go back to reference Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47:3826–3837CrossRef Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47:3826–3837CrossRef
10.
go back to reference Fundador NGV, Iwata T (2013) Enhanced crystallization of poly(d-lactide) by xylane esters. Polym Degrad Stab 98:2482–2487CrossRef Fundador NGV, Iwata T (2013) Enhanced crystallization of poly(d-lactide) by xylane esters. Polym Degrad Stab 98:2482–2487CrossRef
11.
go back to reference Menyhárd A, Gahleitner M, Varga J, Bernreitner K, Jääskeläinen P, Øysæd H, Pukánszky B (2009) The influence of nucleus density on optical properties in nucleated isotactic polypropylene. Eur Polym J 45:3138–3148CrossRef Menyhárd A, Gahleitner M, Varga J, Bernreitner K, Jääskeläinen P, Øysæd H, Pukánszky B (2009) The influence of nucleus density on optical properties in nucleated isotactic polypropylene. Eur Polym J 45:3138–3148CrossRef
12.
go back to reference Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542CrossRef Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542CrossRef
13.
go back to reference Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131CrossRef Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131CrossRef
14.
go back to reference Wen X, Lin Y, Han C, Zhang K, Ran X, Li Y, Dong L (2009) Thermomechanical and optical properties of biodegradable poly(l-lactide)/silica nanocomposites by melt compounding. J Appl Polym Sci 114:3379–3388CrossRef Wen X, Lin Y, Han C, Zhang K, Ran X, Li Y, Dong L (2009) Thermomechanical and optical properties of biodegradable poly(l-lactide)/silica nanocomposites by melt compounding. J Appl Polym Sci 114:3379–3388CrossRef
15.
go back to reference Okada A, Usuki A (2006) Twenty years of polymer-clay nanocomposites. Macromol Mater Eng 291:1449–1476CrossRef Okada A, Usuki A (2006) Twenty years of polymer-clay nanocomposites. Macromol Mater Eng 291:1449–1476CrossRef
16.
go back to reference Papageorgioua GZ, Achiliasa DS, Nanakia S, Beslikasb T, Bikiarisa D (2010) PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochimi Acta 511:129–139CrossRef Papageorgioua GZ, Achiliasa DS, Nanakia S, Beslikasb T, Bikiarisa D (2010) PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochimi Acta 511:129–139CrossRef
17.
go back to reference Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef
18.
go back to reference Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747CrossRef Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747CrossRef
19.
go back to reference Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297CrossRef Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297CrossRef
20.
go back to reference Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377–384CrossRef Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377–384CrossRef
21.
go back to reference Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubios P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49:3471–3482CrossRef Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubios P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49:3471–3482CrossRef
22.
go back to reference Rhin JW, Hong SI, Ha CS (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol 42:612–617CrossRef Rhin JW, Hong SI, Ha CS (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol 42:612–617CrossRef
23.
go back to reference Molinaro S, Romero MC, Boaro M, Sensidoni A, Lagazio C, Morris M, Kerry J (2013) Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. J Food Eng 117:113–123CrossRef Molinaro S, Romero MC, Boaro M, Sensidoni A, Lagazio C, Morris M, Kerry J (2013) Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. J Food Eng 117:113–123CrossRef
24.
go back to reference Nakayama N, Hayashi T (2007) Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92:1255–1264CrossRef Nakayama N, Hayashi T (2007) Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92:1255–1264CrossRef
25.
go back to reference Fukushima K, Fina A, Geobaldo F, Venturello A, Camino G (2012) Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate. Express Polym Lett 6(11):914–926CrossRef Fukushima K, Fina A, Geobaldo F, Venturello A, Camino G (2012) Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate. Express Polym Lett 6(11):914–926CrossRef
26.
go back to reference Wu H, Liu C, Chen J, Chan PR, Chen Y, Anderson DP (2009) Structure and properties of starch/α-zirconium phosphate nanocomposite films. Carbohydr Polym 77:358–364CrossRef Wu H, Liu C, Chen J, Chan PR, Chen Y, Anderson DP (2009) Structure and properties of starch/α-zirconium phosphate nanocomposite films. Carbohydr Polym 77:358–364CrossRef
27.
go back to reference Kim S, Kim E, Kim S, Kim W (2005) Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate. J Colloid Interface Sci 292:93–98CrossRef Kim S, Kim E, Kim S, Kim W (2005) Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate. J Colloid Interface Sci 292:93–98CrossRef
28.
go back to reference Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48:1688–1694CrossRef Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48:1688–1694CrossRef
29.
go back to reference Wu L, Cao D, Huang Y, Li BG (2008) Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization. Polymer 49:742–748CrossRef Wu L, Cao D, Huang Y, Li BG (2008) Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization. Polymer 49:742–748CrossRef
30.
go back to reference Akcora P, Kumar SK, Sakai VG, Li Y, Benicewicz BC, Schadler LS (2010) Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 43:8275–8281CrossRef Akcora P, Kumar SK, Sakai VG, Li Y, Benicewicz BC, Schadler LS (2010) Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 43:8275–8281CrossRef
31.
go back to reference Chevigny C, Dalmas F, Cola ED, Gigmes D, Bertin D, Boue F, Jestin J (2011) Polymer-grafted-nanoparticles nanocomposites: dispersion, grafted chain conformation, and rheological behavior. Macromolecules 44:122–133CrossRef Chevigny C, Dalmas F, Cola ED, Gigmes D, Bertin D, Boue F, Jestin J (2011) Polymer-grafted-nanoparticles nanocomposites: dispersion, grafted chain conformation, and rheological behavior. Macromolecules 44:122–133CrossRef
32.
go back to reference Advincula RC, Brittain WJ, Caster KC, Ruhe J (2004) Polymer brushes. Wiley, WeinheimCrossRef Advincula RC, Brittain WJ, Caster KC, Ruhe J (2004) Polymer brushes. Wiley, WeinheimCrossRef
33.
go back to reference Kobayashi M, Takahara A (2005) Synthesis and frictional properties of poly (2, 3-dihydroxypropyl methacrylate) brush prepared by surface-initiated atom transfer radical polymerization. Chem Lett 34(12):1582–1583CrossRef Kobayashi M, Takahara A (2005) Synthesis and frictional properties of poly (2, 3-dihydroxypropyl methacrylate) brush prepared by surface-initiated atom transfer radical polymerization. Chem Lett 34(12):1582–1583CrossRef
34.
go back to reference Tsuji Y, Ohno K, Yamamoto S, Goto A, Fukuda T (2006) Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv Polym Sci 197:1–45CrossRef Tsuji Y, Ohno K, Yamamoto S, Goto A, Fukuda T (2006) Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv Polym Sci 197:1–45CrossRef
35.
go back to reference Kobayashi M, Terayama Y, Hosaka N, Kaido M, Suzuki A, Yamada N, Torikai N, Ishihara K, Takahara A (2007) Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Mater 3:740–746CrossRef Kobayashi M, Terayama Y, Hosaka N, Kaido M, Suzuki A, Yamada N, Torikai N, Ishihara K, Takahara A (2007) Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Mater 3:740–746CrossRef
36.
go back to reference Kobayashi M, Terada M, Terayama Y, Kikuchi M, Takahara A (2010) Direct synthesis of well-defined poly[{2-(methacryloyloxy)ethyl}trimethylammonium chloride] brush via surface-initiated atom transfer radical polymerization in fluoroalcohol. Macromolecules 43:8409–8415CrossRef Kobayashi M, Terada M, Terayama Y, Kikuchi M, Takahara A (2010) Direct synthesis of well-defined poly[{2-(methacryloyloxy)ethyl}trimethylammonium chloride] brush via surface-initiated atom transfer radical polymerization in fluoroalcohol. Macromolecules 43:8409–8415CrossRef
37.
go back to reference Terayama Y, Kikuchi M, Kobayashi M, Takahara A (2011) Well-defined poly(sulfobetaine) brushes prepared by surface-initiated ATRP using a fluoroalcohol and ionic liquids as the solvents. Macromolecules 44:104–111CrossRef Terayama Y, Kikuchi M, Kobayashi M, Takahara A (2011) Well-defined poly(sulfobetaine) brushes prepared by surface-initiated ATRP using a fluoroalcohol and ionic liquids as the solvents. Macromolecules 44:104–111CrossRef
38.
go back to reference Ohno K, Morinaga T, Koh K, Tsujii Y, Fukuda T (2005) Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 38:2137–2142CrossRef Ohno K, Morinaga T, Koh K, Tsujii Y, Fukuda T (2005) Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 38:2137–2142CrossRef
39.
go back to reference Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A (2008) Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langumuir 24:8772–8778CrossRef Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A (2008) Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langumuir 24:8772–8778CrossRef
40.
go back to reference Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155CrossRef Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155CrossRef
41.
go back to reference Novak BM (1993) Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv Mater 5:422–433CrossRef Novak BM (1993) Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv Mater 5:422–433CrossRef
42.
go back to reference Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317CrossRef Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317CrossRef
43.
go back to reference Maruhashi Y, Iida S (2001) Transparency of polymer blends. Polym Eng Sci 41(11):1987–1995CrossRef Maruhashi Y, Iida S (2001) Transparency of polymer blends. Polym Eng Sci 41(11):1987–1995CrossRef
44.
go back to reference Norris FH, Stein RS (1958) The scattering of light from thin polymer films IV. Scattering from oriented polymers. J Polym Sci 27:87–114CrossRef Norris FH, Stein RS (1958) The scattering of light from thin polymer films IV. Scattering from oriented polymers. J Polym Sci 27:87–114CrossRef
45.
go back to reference Li SH, Woo EM (2008) Effects of chain configuration on UCST behavior in blends of poly(l-lactic acid) with tactic poly(methyl methacrylate)s. J Polym Sci B Polym Phys 46:2355–2369CrossRef Li SH, Woo EM (2008) Effects of chain configuration on UCST behavior in blends of poly(l-lactic acid) with tactic poly(methyl methacrylate)s. J Polym Sci B Polym Phys 46:2355–2369CrossRef
46.
go back to reference Zhang G, Zhang J, Wang S, Shen D (2003) Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci B Polym Phys 41:23–330CrossRef Zhang G, Zhang J, Wang S, Shen D (2003) Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci B Polym Phys 41:23–330CrossRef
47.
go back to reference Shirahase T, Komatsu Y, Tominaga Y, Asai S, Sumita M (2006) Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(methyl methacrylate) blends. Polymer 47:4839–4844CrossRef Shirahase T, Komatsu Y, Tominaga Y, Asai S, Sumita M (2006) Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(methyl methacrylate) blends. Polymer 47:4839–4844CrossRef
48.
go back to reference Eguiburu JL, Iruin JJ, Fernandez-Berridi MJ, Roman JS (1998) Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polymer 39(26):6891–6897CrossRef Eguiburu JL, Iruin JJ, Fernandez-Berridi MJ, Roman JS (1998) Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polymer 39(26):6891–6897CrossRef
49.
go back to reference Li SH, Woo EM (2008) Immiscibility–miscibility phase transitions in blends of poly(l-lactide) with poly(methyl methacrylate). Polym Int 57:1242–1251CrossRef Li SH, Woo EM (2008) Immiscibility–miscibility phase transitions in blends of poly(l-lactide) with poly(methyl methacrylate). Polym Int 57:1242–1251CrossRef
50.
go back to reference Chinthamanipeta PS, Kobukata S, Nakata H, Shipp DA (2008) Synthesis of poly(methyl methacrylate)–silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization. Polymer 49:5636–5642CrossRef Chinthamanipeta PS, Kobukata S, Nakata H, Shipp DA (2008) Synthesis of poly(methyl methacrylate)–silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization. Polymer 49:5636–5642CrossRef
51.
go back to reference Asaln S, Calandrelli L, Laurienzo P, Malinconico M, Migliaresi C (2000) Poly (d, l-lactic acid)/poly (∈-caprolactone) blend membranes: preparation and morphological characterization. J Mater Sci 35:1615–1622CrossRef Asaln S, Calandrelli L, Laurienzo P, Malinconico M, Migliaresi C (2000) Poly (d, l-lactic acid)/poly (∈-caprolactone) blend membranes: preparation and morphological characterization. J Mater Sci 35:1615–1622CrossRef
52.
go back to reference Ozeki E (1996) Characteristics of poly(l-lactide) as biodegradable plastics. Shimazu hyouron 53(1):61–68 (In Japanese) Ozeki E (1996) Characteristics of poly(l-lactide) as biodegradable plastics. Shimazu hyouron 53(1):61–68 (In Japanese)
53.
go back to reference Schulz H, Burtscher P, Madler L (2007) Correlating filler tranparency with inorganic/organic composite transparency. Composite A 38:2451–2459CrossRef Schulz H, Burtscher P, Madler L (2007) Correlating filler tranparency with inorganic/organic composite transparency. Composite A 38:2451–2459CrossRef
54.
go back to reference Hirota S, Sato T, Tominaga Y, Asai A, Sumita M (2006) The effect of high-pressure carbon dioxide treatment on the crystallization behavior and mechanical properties of poly(l-lactic acid)/poly(methyl methacrylate) blends. Polymer 47:3954–3960CrossRef Hirota S, Sato T, Tominaga Y, Asai A, Sumita M (2006) The effect of high-pressure carbon dioxide treatment on the crystallization behavior and mechanical properties of poly(l-lactic acid)/poly(methyl methacrylate) blends. Polymer 47:3954–3960CrossRef
55.
go back to reference Choochottiros C, Chin IJ (2013) Potential transparent PLA impact modifiers based on PMMA copolymers. Eur Polym J 49:957–966CrossRef Choochottiros C, Chin IJ (2013) Potential transparent PLA impact modifiers based on PMMA copolymers. Eur Polym J 49:957–966CrossRef
56.
go back to reference Tsuji H, Ikada Y (1995) Properties and morphologies of poly(l-lactide):1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer 36(14):2709–2716CrossRef Tsuji H, Ikada Y (1995) Properties and morphologies of poly(l-lactide):1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer 36(14):2709–2716CrossRef
Metadata
Title
Effect of nanoparticle SiO2 grafted poly (methyl methacrylate) on poly(l-lactic) acid crystallization
Authors
Tomoko Shirahase
Moriya Kikuchi
Takamichi Shinohara
Motoyasu Kobayashi
Atsushi Takahara
Publication date
01-06-2015
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 6/2015
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1336-1

Other articles of this Issue 6/2015

Polymer Bulletin 6/2015 Go to the issue

Premium Partners