Skip to main content
Top

20-08-2024

Effect of retrograssion and re-aging on microstructure and properties of Al–Zn–Mg–Cu–Zr–Er alloy

Authors: M. V. Glavatskikh, L. E. Gorlov, R. Yu. Barkov, A. V. Pozdniakov

Published in: Metallurgist

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The study investigated the effect of retrogression and re-aging (RRA) on the structure and properties of the new Al–3.5Zn–3.5Mg–3.5Cu–1.6Er–0.2Zr–0.2Cr alloy through the use of scanning electron microscopy, thermodynamic calculations, hardness tests, current density, and corrosion potential. During the crystallization process, chromium is distributed between primary intermetallic compounds with an approximate composition of (Al,Zn)79.8Mg4.7Cu3Cr5.5(Er,Ti)7, with a size of approximately 10 μm and an aluminum solid solution. Following two-stage homogenization heat treatment, the Al8Cu4Er and Mg2Si phases exhibit minimal morphological changes, with the θ‑phase (Al2Cu) being completely dissolved and the T‑phase (Al,Zn,Mg,Cu) transformed into the S‑phase (Al2CuMg). Thermodynamic calculations indicate that the alloy should also contain the Al3Zr and Al45Cr7 phases, which precipitate from the supersaturated solid solution during homogenization. Age hardening in the temperature range of 150–210 °C occurs due to the release of metastable modifications of the T‑phase. The combination of hardness (140 HV) and corrosion resistance (minimum corrosion current density 1 μA/cm2) is optimized by retrogression and re-aging.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Krasilnikov GL (1978) Development and Study of High-Strength Casting Alloy Based on Aluminum–Zinc–Magnesium System. Dissertation, Moscow, MISiS Krasilnikov GL (1978) Development and Study of High-Strength Casting Alloy Based on Aluminum–Zinc–Magnesium System. Dissertation, Moscow, MISiS
2.
go back to reference Postnikov NS (1983) Strengthening of Aluminum Alloys and Castings. Metallurgiya, Moscow Postnikov NS (1983) Strengthening of Aluminum Alloys and Castings. Metallurgiya, Moscow
3.
go back to reference Gotsev IS (1989) Structural-Phase Analysis of Al–Cu–Si–Mn System and Development of High-Strength and Heat-Resistant Alloy. Dissertation, Moscow, VIAM Gotsev IS (1989) Structural-Phase Analysis of Al–Cu–Si–Mn System and Development of High-Strength and Heat-Resistant Alloy. Dissertation, Moscow, VIAM
4.
go back to reference Zavarsin A (1981) Research and Development of Secondary Casting Alloys Based on Al–Mg–Zn–Cu System. Cand. Sci (Engineering) Dissertation, Moscow: MISiS Zavarsin A (1981) Research and Development of Secondary Casting Alloys Based on Al–Mg–Zn–Cu System. Cand. Sci (Engineering) Dissertation, Moscow: MISiS
5.
go back to reference Zolotorevsky VS, Ratner AD, Belov NA, Aksenov AA, Alekseev VF, Baev VA (1992) Structure of new high-strength casting aluminum alloys based on technical aluminum,” Sb. “Metallovedenie i Obrabotka Tsvetnykh Splavov. Nauka, Moscow, pp 142–157 Zolotorevsky VS, Ratner AD, Belov NA, Aksenov AA, Alekseev VF, Baev VA (1992) Structure of new high-strength casting aluminum alloys based on technical aluminum,” Sb. “Metallovedenie i Obrabotka Tsvetnykh Splavov. Nauka, Moscow, pp 142–157
6.
go back to reference Belov NA (1985) nfluence of Composition and Structure on Fracture Toughness of Casting Alloys of Al–Mg–Zn–Cu System and Development of High-Strength Alloy Based on This System with Increased Impurity Content. Dissertation, Moscow, MISiS Belov NA (1985) nfluence of Composition and Structure on Fracture Toughness of Casting Alloys of Al–Mg–Zn–Cu System and Development of High-Strength Alloy Based on This System with Increased Impurity Content. Dissertation, Moscow, MISiS
7.
go back to reference Belov NA, Zolotorevsky VS (2003) New high-strength casting alloys based on aluminum-nickel eutectic (nicalines),” Nauch.-Tekhnolog. Obesp. Deyatel. Predpr. Instit. Firm Mater. Sem. MGIU, Moscow, pp 584–593 Belov NA, Zolotorevsky VS (2003) New high-strength casting alloys based on aluminum-nickel eutectic (nicalines),” Nauch.-Tekhnolog. Obesp. Deyatel. Predpr. Instit. Firm Mater. Sem. MGIU, Moscow, pp 584–593
8.
go back to reference Belov NA, Zolotorevsky VS (2003) Casting alloys based on aluminum-nickel eutectic (nicalines) as a possible alternative to silumins. Tsvetnye Met 2:99–105 Belov NA, Zolotorevsky VS (2003) Casting alloys based on aluminum-nickel eutectic (nicalines) as a possible alternative to silumins. Tsvetnye Met 2:99–105
9.
go back to reference Cheverikin VV (2007) nfluence of Eutectic-Forming Elements on the Structure and Properties of High-Strength Alloys of Al–Zn–Mg system. Dissertation, Moscow, MISiS Cheverikin VV (2007) nfluence of Eutectic-Forming Elements on the Structure and Properties of High-Strength Alloys of Al–Zn–Mg system. Dissertation, Moscow, MISiS
10.
go back to reference Gerchikova NS, Fridlyander IN, Zaitseva NI, Kirkina NN (1972) Change in the structure and properties of Al–Zn–Mg alloys. Met Sci Heat Treat 14(3):233–236CrossRef Gerchikova NS, Fridlyander IN, Zaitseva NI, Kirkina NN (1972) Change in the structure and properties of Al–Zn–Mg alloys. Met Sci Heat Treat 14(3):233–236CrossRef
11.
go back to reference Zolotorevsky VS (1978) Microstructure and Mechanical Properties of Cast Aluminum Alloys. Dissertation, Moscow, MISiS Zolotorevsky VS (1978) Microstructure and Mechanical Properties of Cast Aluminum Alloys. Dissertation, Moscow, MISiS
12.
go back to reference Zou Y, Wu X, Tang S, Zhu Q, Song H, Guo M, Cao L (2021) Investigation on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys with various Zn/Mg ratios. J Mater Sci Technol 85:106–117CrossRef Zou Y, Wu X, Tang S, Zhu Q, Song H, Guo M, Cao L (2021) Investigation on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys with various Zn/Mg ratios. J Mater Sci Technol 85:106–117CrossRef
13.
go back to reference Novikov II (1966) Hot Brittleness of Non-Ferrous Metals and Alloys. Nauka, Moscow, p 300 Novikov II (1966) Hot Brittleness of Non-Ferrous Metals and Alloys. Nauka, Moscow, p 300
14.
go back to reference Pan Y, Zhang D, Liu H, Zhuang L, Zhang J (2021) Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(–Cu) alloys. J Alloys Compd 853:157199CrossRef Pan Y, Zhang D, Liu H, Zhuang L, Zhang J (2021) Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(–Cu) alloys. J Alloys Compd 853:157199CrossRef
15.
go back to reference Zolotorevskiy VS, Pozdniakov AV, Yu. Churyumov A (2014) Search for promising compositions for developing new multiphase casting alloys based on Al–Zn–Mg matrix using thermodynamic calculations and mathematical modeling. Phys Met Met 115(3):286–294CrossRef Zolotorevskiy VS, Pozdniakov AV, Yu. Churyumov A (2014) Search for promising compositions for developing new multiphase casting alloys based on Al–Zn–Mg matrix using thermodynamic calculations and mathematical modeling. Phys Met Met 115(3):286–294CrossRef
16.
go back to reference Pozdniakov AV, Zolotorevskiy VS, Mamzurina OI (2015) Determining the hot cracking index of Al–Mg–Zn casting alloys calculated using the effective solidification range. Int J Cast Met Res 28(5):318–321CrossRef Pozdniakov AV, Zolotorevskiy VS, Mamzurina OI (2015) Determining the hot cracking index of Al–Mg–Zn casting alloys calculated using the effective solidification range. Int J Cast Met Res 28(5):318–321CrossRef
17.
go back to reference Shurkin PK, Akopyan TK, Galkin SP, Aleshchenko AS (2019) Effect of radial shear rolling on the structure and mechanical properties of a new-generation high-strength aluminum alloy based on the Al–Zn–Mg–Ni–Fe system. Met Sci Heat Treat 60:764–769CrossRef Shurkin PK, Akopyan TK, Galkin SP, Aleshchenko AS (2019) Effect of radial shear rolling on the structure and mechanical properties of a new-generation high-strength aluminum alloy based on the Al–Zn–Mg–Ni–Fe system. Met Sci Heat Treat 60:764–769CrossRef
18.
go back to reference Knipling KE, Dunand DC, Seidman DN (2007) Nucleation and precipitation strengthening in dilute Al-Ti and Al-Zr alloys. Met Mater Trans A 38:2552–2563CrossRef Knipling KE, Dunand DC, Seidman DN (2007) Nucleation and precipitation strengthening in dilute Al-Ti and Al-Zr alloys. Met Mater Trans A 38:2552–2563CrossRef
19.
go back to reference Belov NA, Alabin AN, Yu A (2009) Prokhorov, “Effect of zirconium additive on strength and electrical resistance of cold-rolled aluminum sheets,”. Izv Vuzov Tsvetnaya Met 4:42–47 Belov NA, Alabin AN, Yu A (2009) Prokhorov, “Effect of zirconium additive on strength and electrical resistance of cold-rolled aluminum sheets,”. Izv Vuzov Tsvetnaya Met 4:42–47
20.
go back to reference Belov NA, Alabin AN, Yu. Prokhorov A (2009) “Influence of annealing on electrical resistance and mechanical properties of cold-formed alloys Al–0,6% (mas.) Zr. Tsvet Met 10:65–68 Belov NA, Alabin AN, Yu. Prokhorov A (2009) “Influence of annealing on electrical resistance and mechanical properties of cold-formed alloys Al–0,6% (mas.) Zr. Tsvet Met 10:65–68
21.
go back to reference Souza PHL, de Oliveira CAS, do Vale Quaresma JM (2018) Precipitation hardening in dilute Al–Zr alloys. J Mater Res Technol 7:66–72CrossRef Souza PHL, de Oliveira CAS, do Vale Quaresma JM (2018) Precipitation hardening in dilute Al–Zr alloys. J Mater Res Technol 7:66–72CrossRef
22.
go back to reference Zakharov VV, Fisenko IA (2018) Effect of homogenization on the structure and properties of alloy of the Al–Zn–Mg–Sc–Zr system. Met Sci Heat Treat 60:354–359CrossRef Zakharov VV, Fisenko IA (2018) Effect of homogenization on the structure and properties of alloy of the Al–Zn–Mg–Sc–Zr system. Met Sci Heat Treat 60:354–359CrossRef
23.
go back to reference Amer SM, Barkov RY, Yakovtseva OA, Pozdniakov AV (2020) Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys. Phys Met Met 121(5):476–482CrossRef Amer SM, Barkov RY, Yakovtseva OA, Pozdniakov AV (2020) Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys. Phys Met Met 121(5):476–482CrossRef
24.
go back to reference Pozdnyakov AV, Yu. Barkov R, Sarsenbaev Z, Amer SM, Prosviryakov AM (2019) Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy. Phys Met Met 120(6):614–619CrossRef Pozdnyakov AV, Yu. Barkov R, Sarsenbaev Z, Amer SM, Prosviryakov AM (2019) Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy. Phys Met Met 120(6):614–619CrossRef
25.
go back to reference Amer SM, Yu. Barkov R, Yakovtseva OA, Loginova IS, Pozdniakov AV (2020) Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy. Mater Sci Technol 36(4):453–459CrossRef Amer SM, Yu. Barkov R, Yakovtseva OA, Loginova IS, Pozdniakov AV (2020) Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy. Mater Sci Technol 36(4):453–459CrossRef
26.
go back to reference Amer SM, Mikhaylovskaya AV, Yu. Barkov R, Kotov AD, Mochugovskiy AG, Yakovtseva OA, Glavatskikh MV, Loginova IS, Medvedeva SV, Pozdniakov AV (2021) Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy. JOM 73(10):3092–3101CrossRef Amer SM, Mikhaylovskaya AV, Yu. Barkov R, Kotov AD, Mochugovskiy AG, Yakovtseva OA, Glavatskikh MV, Loginova IS, Medvedeva SV, Pozdniakov AV (2021) Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy. JOM 73(10):3092–3101CrossRef
27.
go back to reference Amer S, Yakovtseva O, Loginova I, Medvedeva S, Prosviryakov A, Bazlov A, Barkov R, Pozdniakov A (2020) The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy. Appl Sci 10:5345CrossRef Amer S, Yakovtseva O, Loginova I, Medvedeva S, Prosviryakov A, Bazlov A, Barkov R, Pozdniakov A (2020) The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy. Appl Sci 10:5345CrossRef
28.
go back to reference Amer SM, Yu. Barkov R, Prosviryakov AS, Pozdniakov AV (2021) tructure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems. Phys Met Met 122:908–914CrossRef Amer SM, Yu. Barkov R, Prosviryakov AS, Pozdniakov AV (2021) tructure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems. Phys Met Met 122:908–914CrossRef
29.
go back to reference Amer SM, Yu. Barkov R, Prosviryakov AS, Pozdniakov AV (2021) Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys. Phys Met Met 122:915–922CrossRef Amer SM, Yu. Barkov R, Prosviryakov AS, Pozdniakov AV (2021) Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys. Phys Met Met 122:915–922CrossRef
30.
go back to reference Glavatskikh MV, Yu. Barkov R, Khomutov MG, Pozdniakov AV (2022) The effects of yttrium and erbium on the phase composition and aging of the Al–Zn–Mg–Cu–Zr alloy with a high copper content. Phys Met Met 123:617–623CrossRef Glavatskikh MV, Yu. Barkov R, Khomutov MG, Pozdniakov AV (2022) The effects of yttrium and erbium on the phase composition and aging of the Al–Zn–Mg–Cu–Zr alloy with a high copper content. Phys Met Met 123:617–623CrossRef
31.
go back to reference Zhang Z, Li D, Li S, Deng H, Zhang S, Fang J, Yuan H, Deng B, Qi L (2022) Effect of direct aging treatment on microstructure, mechanical and corrosion properties of a Si–Zr–Er modified Al–Zn–Mg–Cu alloy prepared by selective laser melting technology. Mater Charact 194:112459CrossRef Zhang Z, Li D, Li S, Deng H, Zhang S, Fang J, Yuan H, Deng B, Qi L (2022) Effect of direct aging treatment on microstructure, mechanical and corrosion properties of a Si–Zr–Er modified Al–Zn–Mg–Cu alloy prepared by selective laser melting technology. Mater Charact 194:112459CrossRef
32.
go back to reference Wang Y, Wu X, Cao L, Tong X, Couper MJ, Liu Q (2020) Effect of trace Er on the microstructure and properties of Al–Zn–Mg–Cu–Zr alloys during heat treatments. Mater Sci Eng A 792:139807CrossRef Wang Y, Wu X, Cao L, Tong X, Couper MJ, Liu Q (2020) Effect of trace Er on the microstructure and properties of Al–Zn–Mg–Cu–Zr alloys during heat treatments. Mater Sci Eng A 792:139807CrossRef
33.
go back to reference Lu JT, Huang H, Wu H, Wen SP, Gao KY, Wu XL, Nie ZR (2023) Mechanical properties and corrosion behavior of a new RRA-treated Al–Zn–Mg–Cu–Er–Zr alloy. Rare Met 42:672–679CrossRef Lu JT, Huang H, Wu H, Wen SP, Gao KY, Wu XL, Nie ZR (2023) Mechanical properties and corrosion behavior of a new RRA-treated Al–Zn–Mg–Cu–Er–Zr alloy. Rare Met 42:672–679CrossRef
34.
go back to reference An Z, Yang W, Zhan H, Hu B, Wang Q, Matsumura S, Sha G (2020) On the strengthening effect of Al–Cr–Si dispersoid in an Al–Si–Mg–Cu casting alloy with Cr addition. Mater Charact 166:110457CrossRef An Z, Yang W, Zhan H, Hu B, Wang Q, Matsumura S, Sha G (2020) On the strengthening effect of Al–Cr–Si dispersoid in an Al–Si–Mg–Cu casting alloy with Cr addition. Mater Charact 166:110457CrossRef
35.
go back to reference Glavatskikh MV, Yu. Barkov R, Khomutov MG, Pozdniakov AV (2023) Influence of manganese on phase composition and mechanical properties of alloys Al–Zn–Mg–Cu–Zr–Y(Er). Metallurg 12:47–53 Glavatskikh MV, Yu. Barkov R, Khomutov MG, Pozdniakov AV (2023) Influence of manganese on phase composition and mechanical properties of alloys Al–Zn–Mg–Cu–Zr–Y(Er). Metallurg 12:47–53
36.
go back to reference Glavatskikh MV, Gorlov LE, Yu. Barkov R, Khomutov MG, Pozdniakov AV (2023) Microstructure, mechanical and corrosion properties of new foundry heat-resistant alloys Al–4Zn–4Mg–4Cu–Zr–Y(Er). Metallurg 9:39–41 Glavatskikh MV, Gorlov LE, Yu. Barkov R, Khomutov MG, Pozdniakov AV (2023) Microstructure, mechanical and corrosion properties of new foundry heat-resistant alloys Al–4Zn–4Mg–4Cu–Zr–Y(Er). Metallurg 9:39–41
37.
go back to reference Wang X, Ma P‑K, Meng Z‑Y, Zhang S‑Y, Liu X, Wang C, Wang H‑Y (2021) Effect of trace Cr alloying on centerline segregations in sub-rapid solidified Al–Mg–Si (AA6061) alloys fabricated by twin-roll casting. Mater Sci Eng A 825:141896CrossRef Wang X, Ma P‑K, Meng Z‑Y, Zhang S‑Y, Liu X, Wang C, Wang H‑Y (2021) Effect of trace Cr alloying on centerline segregations in sub-rapid solidified Al–Mg–Si (AA6061) alloys fabricated by twin-roll casting. Mater Sci Eng A 825:141896CrossRef
38.
go back to reference Trudonoshyn O, Prach O, Randelzhofer P, Durst K, Körner C (2021) Heat treatment of the new high-strength high-ductility Al–Mg–Si–Mn alloys with Sc, Zr and Cr additions. Materialia 15:100981CrossRef Trudonoshyn O, Prach O, Randelzhofer P, Durst K, Körner C (2021) Heat treatment of the new high-strength high-ductility Al–Mg–Si–Mn alloys with Sc, Zr and Cr additions. Materialia 15:100981CrossRef
39.
go back to reference Wen L, Liu W, Wu G, Wu H, Zhang L, Sun J, Zhang J, Xu S, Shi C, Wang Y, Lu Y (2022) Microstructure and stress corrosion cracking resistance of Al–6.5Zn–2Cu–1.5Mg–0.05Ti alloy modified by Cr addition. Mater Charact 183:111621CrossRef Wen L, Liu W, Wu G, Wu H, Zhang L, Sun J, Zhang J, Xu S, Shi C, Wang Y, Lu Y (2022) Microstructure and stress corrosion cracking resistance of Al–6.5Zn–2Cu–1.5Mg–0.05Ti alloy modified by Cr addition. Mater Charact 183:111621CrossRef
40.
go back to reference Amer SM, Glavatskikh MV, Yu. Churyumov A, Loginova IS, Yu. Barkov R, Khomutov MG, Pozdniakov AV (2023) Comprehensive analysis of microstructure and hot deformation behavior of Al–Cu–Y–Mg–Cr–Zr–Ti–Fe–Si alloy. Metals 13:1853CrossRef Amer SM, Glavatskikh MV, Yu. Churyumov A, Loginova IS, Yu. Barkov R, Khomutov MG, Pozdniakov AV (2023) Comprehensive analysis of microstructure and hot deformation behavior of Al–Cu–Y–Mg–Cr–Zr–Ti–Fe–Si alloy. Metals 13:1853CrossRef
41.
go back to reference Park JK (1988) Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6. Mater Sci Eng A 103:223–231CrossRef Park JK (1988) Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6. Mater Sci Eng A 103:223–231CrossRef
42.
go back to reference Peng G, Chen K, Chen S, Fang H (2012) Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion behavior of Al–Zn–Mg–Cu alloy. Trans Nonferrous Met Soc China 22(4):803–809CrossRef Peng G, Chen K, Chen S, Fang H (2012) Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion behavior of Al–Zn–Mg–Cu alloy. Trans Nonferrous Met Soc China 22(4):803–809CrossRef
43.
go back to reference Wang YL, Pan QL, Wei LL, Li B, Wang Y (2014) Effect of retrogression and reaging treatment on the microstructure and fatigue crack growth behavior of 7050 aluminum alloy thick plate. Mater Des 55:857–863CrossRef Wang YL, Pan QL, Wei LL, Li B, Wang Y (2014) Effect of retrogression and reaging treatment on the microstructure and fatigue crack growth behavior of 7050 aluminum alloy thick plate. Mater Des 55:857–863CrossRef
44.
go back to reference He B, Cao L, Wu X, Tang S, Lin X, Zou Y (2024) Effect of continuous retrogression and re-ageing treatment on mechanical properties, corrosion behavior and microstructure of an Al–Zn–Mg–Cu alloy. J Alloys Compd 970:172592CrossRef He B, Cao L, Wu X, Tang S, Lin X, Zou Y (2024) Effect of continuous retrogression and re-ageing treatment on mechanical properties, corrosion behavior and microstructure of an Al–Zn–Mg–Cu alloy. J Alloys Compd 970:172592CrossRef
45.
go back to reference Zhong H, Li S, Wu J, Deng H, Chen J, Yan N, Chen Z, Duan L (2022) Effects of retrogression and re-aging treatment on precipitation behavior, mechanical and corrosion properties of a Zr+Er modified Al–Zn–Mg–Cu alloy. Mater Charact 183:111617CrossRef Zhong H, Li S, Wu J, Deng H, Chen J, Yan N, Chen Z, Duan L (2022) Effects of retrogression and re-aging treatment on precipitation behavior, mechanical and corrosion properties of a Zr+Er modified Al–Zn–Mg–Cu alloy. Mater Charact 183:111617CrossRef
46.
go back to reference Knipling K (2008) Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 °C. Acta Mater 56:1182–1195CrossRef Knipling K (2008) Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 °C. Acta Mater 56:1182–1195CrossRef
47.
go back to reference Wei C, Zhan Y (2019) Phase-equilibrium investigation of the Al–Cr–Er ternary system at 773 K (500 °C). Met Mater Trans A 50A:2956–2970CrossRef Wei C, Zhan Y (2019) Phase-equilibrium investigation of the Al–Cr–Er ternary system at 773 K (500 °C). Met Mater Trans A 50A:2956–2970CrossRef
48.
go back to reference Raghavan V (2012) Al–Cr–Cu (Aluminum–Chromium–Copper). J -ph Equilib Diffus 33:53–54CrossRef Raghavan V (2012) Al–Cr–Cu (Aluminum–Chromium–Copper). J -ph Equilib Diffus 33:53–54CrossRef
49.
go back to reference Raghavan V (2007) Al–Er–Mg (Aluminum–Erbium–Magnesium). J -ph Equilib Diffus 28:461–463CrossRef Raghavan V (2007) Al–Er–Mg (Aluminum–Erbium–Magnesium). J -ph Equilib Diffus 28:461–463CrossRef
50.
go back to reference Rogl P, Stiltz S, Hayes FH (1992) The Al–Cr–Mg system (aluminum–chromium–magnesium). J -ph Equilib 13:317–323CrossRef Rogl P, Stiltz S, Hayes FH (1992) The Al–Cr–Mg system (aluminum–chromium–magnesium). J -ph Equilib 13:317–323CrossRef
51.
go back to reference Zou Y, Wu X, Tang S, Zhu Q, Song H, Cao L (2020) Co-precipitation of T′ and η′ phase in Al–Zn–Mg–Cu alloys. Mater Charact 169:110610CrossRef Zou Y, Wu X, Tang S, Zhu Q, Song H, Cao L (2020) Co-precipitation of T′ and η′ phase in Al–Zn–Mg–Cu alloys. Mater Charact 169:110610CrossRef
52.
go back to reference Hou S, Liu P, Zhang D, Zhang J, Zhuang L (2018) Precipitation hardening behavior and microstructure evolution of Al–5.1Mg–0.15Cu alloy with 3.0Zn (wt.%) addition. J Mater Sci 53(5):3846–3861CrossRef Hou S, Liu P, Zhang D, Zhang J, Zhuang L (2018) Precipitation hardening behavior and microstructure evolution of Al–5.1Mg–0.15Cu alloy with 3.0Zn (wt.%) addition. J Mater Sci 53(5):3846–3861CrossRef
Metadata
Title
Effect of retrograssion and re-aging on microstructure and properties of Al–Zn–Mg–Cu–Zr–Er alloy
Authors
M. V. Glavatskikh
L. E. Gorlov
R. Yu. Barkov
A. V. Pozdniakov
Publication date
20-08-2024
Publisher
Springer US
Published in
Metallurgist
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-024-01776-5

Premium Partners