Skip to main content
Top
Published in: Strength of Materials 6/2021

03-03-2022

Effect of Rhenium and Gadolinium Additions on the Mechanical Properties of Ti-48Al-2Cr-2Nb Sintered Through Spark Plasma Sintering

Authors: M. Srikanth, T. Siva, A. Raja Annamalai

Published in: Strength of Materials | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, rhenium and gadolinium powders are added to pre-alloyed Ti-48Al-2Cr-2Nb powder, with contents varying from 0 to 1 wt.%. The effect of the composition on the relative sintered density, microstructure, phase formation, mechanical properties are studied. Alloy powders are mechanically mixed using planetary mill at 200 rpm for 20 min and fabricated using spark plasma sintering at 1150°C with a heating rate of 100 °C/min at a 50 MPa pressure. Among other alloys, the 75 wt.% Re TiAl alloy had a relative sintered density of 98.13%, Vickers hardness of 312 HV0.5, and the ultimate tensile strength of 744 MPa. On the other hand, the TiAl alloy with a 0.5 wt.% Gd content had the relative sintered density of 98.98%, a duplex microstructure with γ grains and (γ + α2) lamellar colonies, Vickers hardness of 323 Hv0.5, and ultimate tensile strength of 939 MPa. Thus, TiAl alloys with 0.5 wt.% Gd addition had higher sintered density, hardness, and tensile strength than all other studied alloys with rhenium and gadolinium addition..

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Majchrowicz, Z. Pakiela, T. Brynk, et al., “Microstructure and mechanical properties of Ti–Re alloys manufactured by selective laser melting,” Mater. Sci. Eng. A, 765, 138290 (2019).CrossRef K. Majchrowicz, Z. Pakiela, T. Brynk, et al., “Microstructure and mechanical properties of Ti–Re alloys manufactured by selective laser melting,” Mater. Sci. Eng. A, 765, 138290 (2019).CrossRef
2.
go back to reference C. Leyens and M. Peters (Eds.), Titanium and Titanium Alloys: Fundamentals and Applications, John Wiley & Sons (2003). C. Leyens and M. Peters (Eds.), Titanium and Titanium Alloys: Fundamentals and Applications, John Wiley & Sons (2003).
3.
go back to reference H. L. Lukas, S. G. Fries, and B. Sundman (Eds.), Computational Thermodynamics. The Calphad Method, Cambridge University Press (2007). H. L. Lukas, S. G. Fries, and B. Sundman (Eds.), Computational Thermodynamics. The Calphad Method, Cambridge University Press (2007).
4.
go back to reference F. Appel, M. Oehring, and R. Wagner, “Novel design concepts for gamma-base titanium aluminide alloys,” Intermetallics, 8, Nos. 9–11, 1283–1312 (2000).CrossRef F. Appel, M. Oehring, and R. Wagner, “Novel design concepts for gamma-base titanium aluminide alloys,” Intermetallics, 8, Nos. 9–11, 1283–1312 (2000).CrossRef
5.
go back to reference H. Saari, D. Seo, J. Blumm, and J. Beddoes, “Thermophysical property determination of high temperature alloys by thermal analysis,” J. Therm. Anal. Calorim., 73, No. 1, 381–388 (2003).CrossRef H. Saari, D. Seo, J. Blumm, and J. Beddoes, “Thermophysical property determination of high temperature alloys by thermal analysis,” J. Therm. Anal. Calorim., 73, No. 1, 381–388 (2003).CrossRef
6.
7.
go back to reference F. C. Campbell (Ed.), Elements of Metallurgy and Engineering Alloys, ASM International (2008). F. C. Campbell (Ed.), Elements of Metallurgy and Engineering Alloys, ASM International (2008).
8.
go back to reference X. Liu, Z. Zhang, R. Sun, et al., “Microstructure and mechanical properties of beta TiAl alloys elaborated by spark plasma sintering,” Intermetallics, 55, 177–183 (2014).CrossRef X. Liu, Z. Zhang, R. Sun, et al., “Microstructure and mechanical properties of beta TiAl alloys elaborated by spark plasma sintering,” Intermetallics, 55, 177–183 (2014).CrossRef
9.
go back to reference L A. Rocha, E. Ariza, A. M. Costa, et al., “Electrochemical behavior of Ti/Al2O3 interfaces produced by diffusion bonding,” Mater. Res., 6, No. 4, 439–444 (2003).CrossRef L A. Rocha, E. Ariza, A. M. Costa, et al., “Electrochemical behavior of Ti/Al2O3 interfaces produced by diffusion bonding,” Mater. Res., 6, No. 4, 439–444 (2003).CrossRef
10.
go back to reference J. Guyon, A. Hazotte, J. P. Monchoux, and E. Bouzy, “Effect of powder state on spark plasma sintering of TiAl alloys,” Intermetallics, 34, 94–100 (2013).CrossRef J. Guyon, A. Hazotte, J. P. Monchoux, and E. Bouzy, “Effect of powder state on spark plasma sintering of TiAl alloys,” Intermetallics, 34, 94–100 (2013).CrossRef
11.
go back to reference G. Wang, J. Yang, and X. Li, “Microstructure and mechanical properties of a Ti–22Al–25Nb alloy fabricated from elemental powders by mechanical alloying and spark plasma sintering,” J. Alloy. Compd., 704, 425–433 (2017).CrossRef G. Wang, J. Yang, and X. Li, “Microstructure and mechanical properties of a Ti–22Al–25Nb alloy fabricated from elemental powders by mechanical alloying and spark plasma sintering,” J. Alloy. Compd., 704, 425–433 (2017).CrossRef
12.
go back to reference Y. Xia, S. D. Luo, X. Wu, et al., “The sintering densification, microstructure and mechanical properties of gamma Ti–48Al–2Cr–2Nb alloy with a small addition of copper,” Mater. Sci. Eng. A, 559, 293–300 (2013).CrossRef Y. Xia, S. D. Luo, X. Wu, et al., “The sintering densification, microstructure and mechanical properties of gamma Ti–48Al–2Cr–2Nb alloy with a small addition of copper,” Mater. Sci. Eng. A, 559, 293–300 (2013).CrossRef
13.
go back to reference D. Y. Seo, S. Bulmer, H. Saari, and P. Au, “The effects of heat treatments and tungsten additions on microstructures and tensile properties of powder metallurgy Ti-48Al-2Nb-2Cr,” Mater. Sci. Forum, 638–642, 1406–1411 (2009). D. Y. Seo, S. Bulmer, H. Saari, and P. Au, “The effects of heat treatments and tungsten additions on microstructures and tensile properties of powder metallurgy Ti-48Al-2Nb-2Cr,” Mater. Sci. Forum, 638–642, 1406–1411 (2009).
14.
go back to reference D. Wang, H. Yuan, and J. Qiang, “The microstructure evolution, mechanical properties and densification mechanism of TiAl-based alloys prepared by spark plasma sintering,” Metals, 7, No. 6, 201 (2017).CrossRef D. Wang, H. Yuan, and J. Qiang, “The microstructure evolution, mechanical properties and densification mechanism of TiAl-based alloys prepared by spark plasma sintering,” Metals, 7, No. 6, 201 (2017).CrossRef
15.
go back to reference M. Suárez, A. Fernández, J. L. Menéndez, et al., “Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials,” in: B. Ertug (Ed.), Sintering Applications, IntechOpen (2013), pp. 319–342. M. Suárez, A. Fernández, J. L. Menéndez, et al., “Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials,” in: B. Ertug (Ed.), Sintering Applications, IntechOpen (2013), pp. 319–342.
19.
go back to reference B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company (1978). B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company (1978).
20.
go back to reference S. Biamino, A. Penna, U. Ackelid, et al., “Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation,” Intermetallics, 19, No. 6, 776–781 (2011).CrossRef S. Biamino, A. Penna, U. Ackelid, et al., “Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation,” Intermetallics, 19, No. 6, 776–781 (2011).CrossRef
21.
go back to reference V. Recina, Mechanical Properties of Gamma Titanium Aluminides, Doctoral Thesis, Chalmers University of Technology, Gothenburg, Sweden (2000). V. Recina, Mechanical Properties of Gamma Titanium Aluminides, Doctoral Thesis, Chalmers University of Technology, Gothenburg, Sweden (2000).
22.
go back to reference W. F. Gale, X. Wen, T. Zhou, and Y. Shen, “Microstructural development and mechanical properties of wide gap and conventional transient liquid phase bonds between Ti-48Al-2Cr-2Nb substrates,” Mater. Sci. Tech., 17, 1423–1433 (2001).CrossRef W. F. Gale, X. Wen, T. Zhou, and Y. Shen, “Microstructural development and mechanical properties of wide gap and conventional transient liquid phase bonds between Ti-48Al-2Cr-2Nb substrates,” Mater. Sci. Tech., 17, 1423–1433 (2001).CrossRef
23.
go back to reference J. H. Chen and R. Cao, Micromechanism of Cleavage Fracture of Metals. A Comprehensive Microphysical Model for Cleavage Cracking in Metals, Butterworth-Heinemann (2014). J. H. Chen and R. Cao, Micromechanism of Cleavage Fracture of Metals. A Comprehensive Microphysical Model for Cleavage Cracking in Metals, Butterworth-Heinemann (2014).
Metadata
Title
Effect of Rhenium and Gadolinium Additions on the Mechanical Properties of Ti-48Al-2Cr-2Nb Sintered Through Spark Plasma Sintering
Authors
M. Srikanth
T. Siva
A. Raja Annamalai
Publication date
03-03-2022
Publisher
Springer US
Published in
Strength of Materials / Issue 6/2021
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00369-4

Other articles of this Issue 6/2021

Strength of Materials 6/2021 Go to the issue

Premium Partners