Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 14/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Effect of Rolling Deformation on Microstructure and Properties of 7085 Aluminum Alloy

Authors: Jinfeng Leng, Yunfan Dong, Binghui Ren, Xianglei Xu, Bao Zhu, Shuo Tian

Published in: Physics of Metals and Metallography | Issue 14/2021

Login to get access
share
SHARE

Abstract

The most economical and effective way to obtain plate by plastic deformation is rolling and rolled plate has been widely used in aircraft skin, car door panel, ship deck, tank armor plate and wireless transmission base station panel. However, the high-strength 7-series alloy has high deformation resistance, which leads to difficult plastic forming meanwhile rolling deformation changes the precipitation behavior of the alloy. Therefore, the effect mechanism of rolling deformation amount (80, 90%) on the microstructure evolution of 7085 aluminum alloy was studied in this work. The results show that the average size of aging precipitates decreases from 3.66 to 2.79 nm, and the width of PFZ (no precipitate free zone) decreases from 22.6 to 19.5 nm when the rolling deformation amount increases from 80 to 90%. The main reason is that the increase of rolling deformation amount leads to the increase of inside dislocation density, which provides nucleation point and dislocation channel, thus refining the precipitation phase and reducing the width of PFZ.
Literature
1.
go back to reference X.-M. Li and M. J. Starink, “Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminum alloys,” Mater. Sci. Technol. 17, 1324–1328 (2001). CrossRef X.-M. Li and M. J. Starink, “Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminum alloys,” Mater. Sci. Technol. 17, 1324–1328 (2001). CrossRef
2.
go back to reference T. Dursun and C. Soutis, “Recent developments in advanced aircraft aluminum alloys,” Mater. Des. 56, 862–871 (2014). CrossRef T. Dursun and C. Soutis, “Recent developments in advanced aircraft aluminum alloys,” Mater. Des. 56, 862–871 (2014). CrossRef
3.
go back to reference W. M. Tian, S. M. Li, J. H. Liu, M. Yu, and Y. J. Du, “Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties,” Chin. J. Aeronaut. 30, 1777–1788 (2017). CrossRef W. M. Tian, S. M. Li, J. H. Liu, M. Yu, and Y. J. Du, “Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties,” Chin. J. Aeronaut. 30, 1777–1788 (2017). CrossRef
4.
go back to reference A. A. Kishchik, M. S. Kishchik, A. D. Kotov, and A. V. Mikhaylovskaya, “Effect of multidirectional forging on the microstructure and mechanical properties of the Al–Mg–Mn–Cr alloy,” Phys. Met. Metallogr. 121, 489–494 (2020). CrossRef A. A. Kishchik, M. S. Kishchik, A. D. Kotov, and A. V. Mikhaylovskaya, “Effect of multidirectional forging on the microstructure and mechanical properties of the Al–Mg–Mn–Cr alloy,” Phys. Met. Metallogr. 121, 489–494 (2020). CrossRef
5.
go back to reference L. I. Kaigorodova, D. Yu. Rasposienko, V. G. Pushin, V. P. Pilyugin, and S. V. Smirnov, “Influence of severe plastic deformation on the structure and properties of Al–Li–Cu–Mg–Zr–Sc–Zn alloy,” Phys. Met. Metallogr. 119, 161–168 (2018). CrossRef L. I. Kaigorodova, D. Yu. Rasposienko, V. G. Pushin, V. P. Pilyugin, and S. V. Smirnov, “Influence of severe plastic deformation on the structure and properties of Al–Li–Cu–Mg–Zr–Sc–Zn alloy,” Phys. Met. Metallogr. 119, 161–168 (2018). CrossRef
6.
go back to reference J. H. Zhao, Y. L. Deng, J. G. Tang, and J. Zhang, “Effect introduced high density of precipitates on the microstructural evolutions during multi-direction forging of Al–Zn–Mg–Cu alloy,” Mater. Sci. Eng., A 798, 139927 (2020). CrossRef J. H. Zhao, Y. L. Deng, J. G. Tang, and J. Zhang, “Effect introduced high density of precipitates on the microstructural evolutions during multi-direction forging of Al–Zn–Mg–Cu alloy,” Mater. Sci. Eng., A 798, 139927 (2020). CrossRef
7.
go back to reference M. A. Afifi, Y. C. Wang, and T. G. Langdon, “Effect of dynamic plastic deformation on the microstructure and mechanical properties of an Al–Zn–Mg alloy,” Mater. Sci. Eng., A 784, 139287 (2020). CrossRef M. A. Afifi, Y. C. Wang, and T. G. Langdon, “Effect of dynamic plastic deformation on the microstructure and mechanical properties of an Al–Zn–Mg alloy,” Mater. Sci. Eng., A 784, 139287 (2020). CrossRef
8.
go back to reference P. Malek and M. Cieslar, “The influence of processing route on the plastic deformation of Al–Zn–Mg–Cu alloys,” Mater. Sci. Eng., A 324, 90–95 (2002). CrossRef P. Malek and M. Cieslar, “The influence of processing route on the plastic deformation of Al–Zn–Mg–Cu alloys,” Mater. Sci. Eng., A 324, 90–95 (2002). CrossRef
9.
go back to reference M. Wang, Y. Wang, J. Liu, Z. Chen, H. Chen, Y. Wu, F. G. Zhang, and H. W. Wang, “Effects of Zn content on microstructures and mechanical properties of in-situ TiB 2/Al–Zn–Mg–Cu composites subjected to hot extrusion,” Mater. Sci. Eng., A 742, 364–372 (2019). CrossRef M. Wang, Y. Wang, J. Liu, Z. Chen, H. Chen, Y. Wu, F. G. Zhang, and H. W. Wang, “Effects of Zn content on microstructures and mechanical properties of in-situ TiB 2/Al–Zn–Mg–Cu composites subjected to hot extrusion,” Mater. Sci. Eng., A 742, 364–372 (2019). CrossRef
10.
go back to reference H. B. Zhang, B. Wang, Y. T. Zhang, Y. Li, J. L. He, and Y. F. Zhang, “Influence of aging treatment on the microstructure and mechanical properties of CNTs/7075 Al composites,” J. Alloys Compd. 814, 152357 (2020). CrossRef H. B. Zhang, B. Wang, Y. T. Zhang, Y. Li, J. L. He, and Y. F. Zhang, “Influence of aging treatment on the microstructure and mechanical properties of CNTs/7075 Al composites,” J. Alloys Compd. 814, 152357 (2020). CrossRef
11.
go back to reference K. Ma, H. M. Wen, T. Hu, T. D. Topping, D. Isheim, D. N. Seidman, E. J. Lavernia, and J. M. Schoenung, “Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy,” Acta Mater. 62, 141–155 (2014). CrossRef K. Ma, H. M. Wen, T. Hu, T. D. Topping, D. Isheim, D. N. Seidman, E. J. Lavernia, and J. M. Schoenung, “Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy,” Acta Mater. 62, 141–155 (2014). CrossRef
12.
go back to reference X. W. Li, Q. Z. Cai, B. Y. Zhao, B. Liu, and W. W. Li, “Precipitation behaviors and properties of solution-aging Al–Zn–Mg–Cu alloy refined with TiN nanoparticles,” J. Alloys Compd. 746, 462–470 (2018). CrossRef X. W. Li, Q. Z. Cai, B. Y. Zhao, B. Liu, and W. W. Li, “Precipitation behaviors and properties of solution-aging Al–Zn–Mg–Cu alloy refined with TiN nanoparticles,” J. Alloys Compd. 746, 462–470 (2018). CrossRef
13.
go back to reference Y. Deng, Z. Yin, and J. Huang, “Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature,” Mater. Sci. Eng., A 528, 1780–1786 (2011). CrossRef Y. Deng, Z. Yin, and J. Huang, “Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature,” Mater. Sci. Eng., A 528, 1780–1786 (2011). CrossRef
14.
go back to reference D. W. Suh, S. Y. Lee, K. H. Lee, S.-K. Lim, and K. H. Oh, “Microstructural evolution of Al–Zn–Mg–Cu–(Sc) alloy during hot extrusion and heat treatments,” J. Mater. Process. Technol. 155, 1330–1336 (2004). CrossRef D. W. Suh, S. Y. Lee, K. H. Lee, S.-K. Lim, and K. H. Oh, “Microstructural evolution of Al–Zn–Mg–Cu–(Sc) alloy during hot extrusion and heat treatments,” J. Mater. Process. Technol. 155, 1330–1336 (2004). CrossRef
15.
go back to reference F. Wang, B. Xiong, Y. Zhang, H. Liu, Z. Li, and Q. Liu, “Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy processed through hot rolling and heat treatment,” Mater. Sci. Eng., A 518, 144–149 (2009). CrossRef F. Wang, B. Xiong, Y. Zhang, H. Liu, Z. Li, and Q. Liu, “Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy processed through hot rolling and heat treatment,” Mater. Sci. Eng., A 518, 144–149 (2009). CrossRef
16.
go back to reference Y. S. Lee, W. K. Kim, D. A. Jo, C. Y. Lim, and H. W. Kim, “Recrystallization behavior of cold rolled Al–Zn–Mg–Cu fabricated by twin roll casting,” Trans. Nonferrous Met. Soc. China 24, 2226–2231 (2014). CrossRef Y. S. Lee, W. K. Kim, D. A. Jo, C. Y. Lim, and H. W. Kim, “Recrystallization behavior of cold rolled Al–Zn–Mg–Cu fabricated by twin roll casting,” Trans. Nonferrous Met. Soc. China 24, 2226–2231 (2014). CrossRef
17.
go back to reference F. X. Li, Y. Z. Liu, and J. H. Yi, “Microstructural evolution of gas atomized Al–Zn–Mg–Cu–Zr powders during semi-solid rolling process,” Trans. Nonferrous Met. Soc. China 24, 2475–2481 (2014). CrossRef F. X. Li, Y. Z. Liu, and J. H. Yi, “Microstructural evolution of gas atomized Al–Zn–Mg–Cu–Zr powders during semi-solid rolling process,” Trans. Nonferrous Met. Soc. China 24, 2475–2481 (2014). CrossRef
18.
go back to reference L. Mei, X. P. Chen, P. Ren, Y. Y. Nie, G. J. Huang, and Q. Liu, “Effect of warm deformation on precipitation and mechanical properties of a cryorolled Al–Zn–Mg–Cu sheet,” Mater. Sci. Eng., A 771, 138608 (2020). CrossRef L. Mei, X. P. Chen, P. Ren, Y. Y. Nie, G. J. Huang, and Q. Liu, “Effect of warm deformation on precipitation and mechanical properties of a cryorolled Al–Zn–Mg–Cu sheet,” Mater. Sci. Eng., A 771, 138608 (2020). CrossRef
19.
go back to reference Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev, and Y. T. Zhu, “Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing,” Acta Mater. 52, 4589–4599 (2004). CrossRef Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev, and Y. T. Zhu, “Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing,” Acta Mater. 52, 4589–4599 (2004). CrossRef
20.
go back to reference A. Azarniya, A. K. Taheri, and K. K. Taheri, “Recent advances in ageing of 7xxx series aluminum alloys: a physical metallurgy perspective,” J. Alloys Compd. 781, 945–983 (2019). CrossRef A. Azarniya, A. K. Taheri, and K. K. Taheri, “Recent advances in ageing of 7xxx series aluminum alloys: a physical metallurgy perspective,” J. Alloys Compd. 781, 945–983 (2019). CrossRef
21.
go back to reference J. D. Robson and P. B. Prangnell, “Dispersoid precipitation and process modelling in zirconium containing commercial aluminum alloys,” Acta Mater. 49, 599–613 (2001). CrossRef J. D. Robson and P. B. Prangnell, “Dispersoid precipitation and process modelling in zirconium containing commercial aluminum alloys,” Acta Mater. 49, 599–613 (2001). CrossRef
22.
go back to reference L. K. Berg, J. Gjonnes, V. Hansen, X. Z. Li, M. K. Wedel, G. Waterloo, D. Schryvers, and L. R. Wallenberg, “GP-zones in Al–Zn–Mg alloys and their role in artificial aging,” Acta Mater. 49, 3443–3451 (2001). CrossRef L. K. Berg, J. Gjonnes, V. Hansen, X. Z. Li, M. K. Wedel, G. Waterloo, D. Schryvers, and L. R. Wallenberg, “GP-zones in Al–Zn–Mg alloys and their role in artificial aging,” Acta Mater. 49, 3443–3451 (2001). CrossRef
23.
go back to reference G. Sha and A. Cerezo, “Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050),” Acta Mater. 52, 4503–4516 (2004). CrossRef G. Sha and A. Cerezo, “Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050),” Acta Mater. 52, 4503–4516 (2004). CrossRef
24.
go back to reference Q. Xiao, Y. Xu, J. Huang, B. Li, B. Wang, S. Liu, and L. Fu, “Effects of quenching agents, two-step aging and microalloying on tensile properties and stress corrosion cracking of Al–Zn–Mg–Cu alloys,” J. Mater. Res. Technol. 9, 10198–10208 (2020). CrossRef Q. Xiao, Y. Xu, J. Huang, B. Li, B. Wang, S. Liu, and L. Fu, “Effects of quenching agents, two-step aging and microalloying on tensile properties and stress corrosion cracking of Al–Zn–Mg–Cu alloys,” J. Mater. Res. Technol. 9, 10198–10208 (2020). CrossRef
25.
go back to reference Z. Zhang, Y. Deng, L. Ye, W. Zhu, F. Wang, K. Jiang, and X. Guo, “Influence of aging treatments on the strength and localized corrosion resistance of aged Al–Zn–Mg–Cu alloy,” J. Alloys Compd. 846, 156223 (2020). CrossRef Z. Zhang, Y. Deng, L. Ye, W. Zhu, F. Wang, K. Jiang, and X. Guo, “Influence of aging treatments on the strength and localized corrosion resistance of aged Al–Zn–Mg–Cu alloy,” J. Alloys Compd. 846, 156223 (2020). CrossRef
Metadata
Title
Effect of Rolling Deformation on Microstructure and Properties of 7085 Aluminum Alloy
Authors
Jinfeng Leng
Yunfan Dong
Binghui Ren
Xianglei Xu
Bao Zhu
Shuo Tian
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 14/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140131