Skip to main content
Top
Published in: Metallurgist 11-12/2021

06-04-2021

Effect of Structural State on Tendency Towards Stress Corrosion Cracking of Ultralow-Carbon Martensitic and Low-Alloy Pipe Steels

Authors: A. B. Korostelev, V. G. Filippov, O. N. Chevskaya, I. P. Shabalov

Published in: Metallurgist | Issue 11-12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical properties as well as crack resistance and stress corrosion cracking (SCC) resistance parameters of ultralow-carbon martensite steels (ULMS) type 05H2G2B and HSLA pipe steel 10G2FB with a different structures depending on processing are investigated. It is shown that despite a higher strength level, SCC resistance of ULMS steel is 25–30% higher than for HSLA steel with ferrite-perlite structure and close to that for this steel subjected to quenching and tempering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. M. Kleiner and A. A. Shatsov, Structural High-Strength Low-Carbon Martensitic Class Steels [in Russian], PGTU Perm’ (2008). L. M. Kleiner and A. A. Shatsov, Structural High-Strength Low-Carbon Martensitic Class Steels [in Russian], PGTU Perm’ (2008).
2.
go back to reference G. V. Kurdyumov, L. M. Utevskii, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977). G. V. Kurdyumov, L. M. Utevskii, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977).
3.
go back to reference I. P. Shabalov, V. G. Filippov, O. N. Chevskaya, and L. A. Baeva, “Improvement of structural steels for gas and oil pipelines,” Metallurg, No. 6, 48–50 (2017). I. P. Shabalov, V. G. Filippov, O. N. Chevskaya, and L. A. Baeva, “Improvement of structural steels for gas and oil pipelines,” Metallurg, No. 6, 48–50 (2017).
4.
go back to reference I. P. Shabalov, V. G. Filippov, O. N. Chevskaya, and L. A. Baeva, “Study of ultralow carbon steel weldability, Probl. Chern. Met. Materialoved., No. 2, 76–84 (2018). I. P. Shabalov, V. G. Filippov, O. N. Chevskaya, and L. A. Baeva, “Study of ultralow carbon steel weldability, Probl. Chern. Met. Materialoved., No. 2, 76–84 (2018).
5.
go back to reference V. M. Mishin and G. A Filippov, Physics of Steel Slow Failure [in Russian], Poligraf. Prom., Mineral. Vody (2013) V. M. Mishin and G. A Filippov, Physics of Steel Slow Failure [in Russian], Poligraf. Prom., Mineral. Vody (2013)
6.
go back to reference V. I. Sarrak and G. A. Filippov, “Martensite brittleness,” MiTOM, No. 4, 21–26 (1978). V. I. Sarrak and G. A. Filippov, “Martensite brittleness,” MiTOM, No. 4, 21–26 (1978).
7.
go back to reference L. I. Éfron, Material Science in “Big” Metallurgy. Pipe Steels [in Russian], Matallurgizdat, Moscow (2012). L. I. Éfron, Material Science in “Big” Metallurgy. Pipe Steels [in Russian], Matallurgizdat, Moscow (2012).
8.
go back to reference V. M. Mishin and G. A. Filippov, “Microstructural factors that decrease the local strength of grain boundaries in martensitic steels,” Physics of Metals and Metallurgy, 119, No. 5, 504–509 (2018). V. M. Mishin and G. A. Filippov, “Microstructural factors that decrease the local strength of grain boundaries in martensitic steels,” Physics of Metals and Metallurgy, 119, No. 5, 504–509 (2018).
9.
go back to reference V. I. Izotov, V. A. Pozdnyakov, and G. A. Filippov, “Effect of original structure on features of failure for hydrogenated low-carbon steel,” FMM, 93, No. 6, 101–107 (2002). V. I. Izotov, V. A. Pozdnyakov, and G. A. Filippov, “Effect of original structure on features of failure for hydrogenated low-carbon steel,” FMM, 93, No. 6, 101–107 (2002).
10.
go back to reference G. A. Filippov, O. V. Livanova, and A. A. Belkin, “Structural features of corrosion fatigue failure mechanism for main oil pipeline pipes,” Probl. Chern. Met. Materialoved., No. 1, 65–71 (2010). G. A. Filippov, O. V. Livanova, and A. A. Belkin, “Structural features of corrosion fatigue failure mechanism for main oil pipeline pipes,” Probl. Chern. Met. Materialoved., No. 1, 65–71 (2010).
11.
go back to reference N. O. Livanova, D. M. Solov’ev, I. P. Shabalov, and G. A. Filippov, “Failure mechanism for welded joints of main oil pipelines,” Probl. Chern. Met. Materialoved., No. 2, 66–72 (2015). N. O. Livanova, D. M. Solov’ev, I. P. Shabalov, and G. A. Filippov, “Failure mechanism for welded joints of main oil pipelines,” Probl. Chern. Met. Materialoved., No. 2, 66–72 (2015).
12.
go back to reference A. R. Mishet’yan, I. P. Shabalov, O. N. Chevskaya, and G. A. Filippov, “Effect of structural state and temperature on resistance to crack generation and propagation for pipe steels of different strength classes,” Metallurg, No. 12, 43–50 (2017). A. R. Mishet’yan, I. P. Shabalov, O. N. Chevskaya, and G. A. Filippov, “Effect of structural state and temperature on resistance to crack generation and propagation for pipe steels of different strength classes,” Metallurg, No. 12, 43–50 (2017).
13.
go back to reference A. A. Kholodnyi, Yu. I. Matrosov, and Ya. S. Kuznechenko, “Effect of pipe steel strength on sulfide stress corrosion cracking resistance,” Metallurg, No. 6, 53–58 (2018). A. A. Kholodnyi, Yu. I. Matrosov, and Ya. S. Kuznechenko, “Effect of pipe steel strength on sulfide stress corrosion cracking resistance,” Metallurg, No. 6, 53–58 (2018).
14.
go back to reference I. P. Shabalov, Yu. I. Matrosov, A. A. Kholodnyi, et al., Steel for Gas and Oil Pipes Resistant to Breakdown in Hydrogen Sulfide-Containing Media [in Russian], Metallurgizdat, Moscow (2017). I. P. Shabalov, Yu. I. Matrosov, A. A. Kholodnyi, et al., Steel for Gas and Oil Pipes Resistant to Breakdown in Hydrogen Sulfide-Containing Media [in Russian], Metallurgizdat, Moscow (2017).
15.
go back to reference A. A. Kholodnyi, Ya. S. Kuznechenko, Yu. I. Matrosov, M. V. Il’ichev, and D. I. Yusupov, “Increase in resistance to sulfide stress corrosion cracking for low-alloy pipe steels,” Metallurg, No. 4, 58–75 (2019). A. A. Kholodnyi, Ya. S. Kuznechenko, Yu. I. Matrosov, M. V. Il’ichev, and D. I. Yusupov, “Increase in resistance to sulfide stress corrosion cracking for low-alloy pipe steels,” Metallurg, No. 4, 58–75 (2019).
Metadata
Title
Effect of Structural State on Tendency Towards Stress Corrosion Cracking of Ultralow-Carbon Martensitic and Low-Alloy Pipe Steels
Authors
A. B. Korostelev
V. G. Filippov
O. N. Chevskaya
I. P. Shabalov
Publication date
06-04-2021
Publisher
Springer US
Published in
Metallurgist / Issue 11-12/2021
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-021-01113-0

Other articles of this Issue 11-12/2021

Metallurgist 11-12/2021 Go to the issue

Premium Partners