Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 6/2015

01-06-2015

Effect of Tb substitution on structural, optical, electrical and magnetic properties of BiFeO3

Authors: M. Muneeswaran, Radhalayam Dhanalakshmi, N. V. Giridharan

Published in: Journal of Materials Science: Materials in Electronics | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tb substituted BiFeO3 [Bi1−xTbxFeO3 (x = 0.05, 0.10, 0.15)] have been synthesized by a low temperature assisted Co-precipitation method. Rietveld-refinement of the X-ray diffraction data reveals a transition from rhombohedral (R3c) to orthorhombic (Pnma) phase, i.e. polar to non-polar phase with Tb substitution. The crystallite sizes of Bi1−xTbxFeO3 (x = 0.05, 0.1 and 0.15) are found to be approximately 30, 21 and 15 nm calculated using Debye–Scherrer equation. From transmission electron microscopy analysis, the particle sizes are found to be between 35–40, 30–35, and 25–30 nm, respectively for Bi1−xTbxFeO3 (x = 0.05, 0.10 and 0.15) samples. UV–Vis diffuse reflectance spectra show a decrease of band gap with increase in Tb concentration. 4A1 and 7E Raman modes have been observed in the range 100–650 cm−1 and two phonon modes centred around 1150–1450 cm−1 have also been observed. The changes in Raman modes such as prominent frequency shift, line broadening and intensity reveals the existence of substitution induced structural changes as supported by the Rietveld refinement. Temperature dependent dielectric measurements on the samples show magnetoelectric coupling in terms of a dielectric anomaly near the Neel temperature (TN). An enhancement of magnetization with increasing Tb concentration in BFO has been observed from room temperature magnetization studies. The leakage current density is found to be reduced with the increase of Tb concentration. Further, P–E hysteresis loop studies show a decrease of remnant polarization (Pr) with the increase in Tb concentration predicting a transition from ferroelectric (polar) to paraelectric (non-polar) phase as inferred from X-ray diffraction analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)CrossRef N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)CrossRef
2.
go back to reference M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D. 38, R123–R152 (2005)CrossRef M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D. 38, R123–R152 (2005)CrossRef
3.
go back to reference Y. Benfang, L. Meiya, L. Jun, G. Dongyun, P. Ling, Z. Xingzhong, Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D Appl. Phys. 41, 065003 (2008)CrossRef Y. Benfang, L. Meiya, L. Jun, G. Dongyun, P. Ling, Z. Xingzhong, Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D Appl. Phys. 41, 065003 (2008)CrossRef
4.
go back to reference S. Karimi, I.M. Reaney, I. Levin, I. Sterianou, Nd-doped BiFeO3 ceramics with antipolar order. Appl. Phys. Lett. 94, 112903 (2009)CrossRef S. Karimi, I.M. Reaney, I. Levin, I. Sterianou, Nd-doped BiFeO3 ceramics with antipolar order. Appl. Phys. Lett. 94, 112903 (2009)CrossRef
5.
go back to reference S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)CrossRef S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)CrossRef
6.
go back to reference M. Muneeswaran, P. Jegatheesan, N.V. Giridharan, Synthesis of nanosized BiFeO3 powders by co-precipitation method. J. Exp. Nanosci. 8, 341–346 (2013)CrossRef M. Muneeswaran, P. Jegatheesan, N.V. Giridharan, Synthesis of nanosized BiFeO3 powders by co-precipitation method. J. Exp. Nanosci. 8, 341–346 (2013)CrossRef
7.
go back to reference P. Uniyal, K.L. Yadav, Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3. J. Phys.: Condens. Matter 21, 012205 (2009) P. Uniyal, K.L. Yadav, Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3. J. Phys.: Condens. Matter 21, 012205 (2009)
8.
go back to reference S. Kazhugasalamoorthy, P. Jegatheesan, R. Mohandoss, N.V. Giridharan, B. Karthikeyan, R. Justin, Joseyphus, and S. Dhanuskodi, Investigations on the properties of pure and rare earth modified bismuth ferrite ceramics. J. Alloys Compd. 493, 569–572 (2010)CrossRef S. Kazhugasalamoorthy, P. Jegatheesan, R. Mohandoss, N.V. Giridharan, B. Karthikeyan, R. Justin, Joseyphus, and S. Dhanuskodi, Investigations on the properties of pure and rare earth modified bismuth ferrite ceramics. J. Alloys Compd. 493, 569–572 (2010)CrossRef
9.
go back to reference S.K. Pradhan, B.K. Roul, D.R. Sahu, Enhancement of ferromagnetism and multiferroicity in Ho doped Fe rich BiFeO3. Solid State Commun. 152, 1176–1180 (2012)CrossRef S.K. Pradhan, B.K. Roul, D.R. Sahu, Enhancement of ferromagnetism and multiferroicity in Ho doped Fe rich BiFeO3. Solid State Commun. 152, 1176–1180 (2012)CrossRef
10.
go back to reference P. Uniyal, K.L. Yadav, Study of dielectric, magnetic and ferroelectric properties in Bi1−xGdxFeO3. Mater. Lett. 62, 2858–2861 (2008)CrossRef P. Uniyal, K.L. Yadav, Study of dielectric, magnetic and ferroelectric properties in Bi1−xGdxFeO3. Mater. Lett. 62, 2858–2861 (2008)CrossRef
11.
go back to reference S. Pattanayak, R.N.P. Choudhary, P.R. Das, Effect of Gd-substitution on phase transition and conduction mechanism of BiFeO3. J. Mater. Sci.: Mater. Electron. 24, 2767–2771 (2013) S. Pattanayak, R.N.P. Choudhary, P.R. Das, Effect of Gd-substitution on phase transition and conduction mechanism of BiFeO3. J. Mater. Sci.: Mater. Electron. 24, 2767–2771 (2013)
12.
go back to reference Y. Li, J. Yu, J. Li, C. Zheng, Y. Wu, Y. Zhao, M. Wang, Y. Wang, Influence of Dy-doping on ferroelectric and dielectric properties in Bi1.052−xDyxFeO3 ceramics. J. Mater. Sci.: Mater. Electron. 22, 323–327 (2011) Y. Li, J. Yu, J. Li, C. Zheng, Y. Wu, Y. Zhao, M. Wang, Y. Wang, Influence of Dy-doping on ferroelectric and dielectric properties in Bi1.052−xDyxFeO3 ceramics. J. Mater. Sci.: Mater. Electron. 22, 323–327 (2011)
13.
go back to reference Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K.J. Ozawa, Enhancement of ferroelectricity and ferromagnetism in rare earth element doped BiFeO3. Appl. Phys. 104, 116109 (2008)CrossRef Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K.J. Ozawa, Enhancement of ferroelectricity and ferromagnetism in rare earth element doped BiFeO3. Appl. Phys. 104, 116109 (2008)CrossRef
14.
go back to reference M.S. Sverre, E.M. Ann, G. Tor, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2009)CrossRef M.S. Sverre, E.M. Ann, G. Tor, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169–173 (2009)CrossRef
15.
go back to reference M. Muneeswaran, N.V. Giridharan, Effect of Dy-substitution on the structural, vibrational, and multiferroic properties of BiFeO3 nanoparticles. J. Appl. Phys. 115, 214109 (2014)CrossRef M. Muneeswaran, N.V. Giridharan, Effect of Dy-substitution on the structural, vibrational, and multiferroic properties of BiFeO3 nanoparticles. J. Appl. Phys. 115, 214109 (2014)CrossRef
16.
go back to reference Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, Magnetic enhancement across a ferroelectric–paraelectric phase boundary in Bi1−xSmxFeO3. Phys. B 411, 106–109 (2013)CrossRef Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, Magnetic enhancement across a ferroelectric–paraelectric phase boundary in Bi1−xSmxFeO3. Phys. B 411, 106–109 (2013)CrossRef
17.
go back to reference V.A. Khomchenko, I.O. Troyanchuk, D.V. Karpinsky, Structural and magnetic phase transitions in Bi1−xPrxFeO3 perovskites. J. Mater. Sci. 47, 1578–1581 (2012)CrossRef V.A. Khomchenko, I.O. Troyanchuk, D.V. Karpinsky, Structural and magnetic phase transitions in Bi1−xPrxFeO3 perovskites. J. Mater. Sci. 47, 1578–1581 (2012)CrossRef
18.
go back to reference Y. Wang, C.W. Nan, Site modification in BiFeO3 thin films studied by Raman spectroscopy and piezoelectric force microscopy. J. Appl. Phys. 103, 114104 (2008)CrossRef Y. Wang, C.W. Nan, Site modification in BiFeO3 thin films studied by Raman spectroscopy and piezoelectric force microscopy. J. Appl. Phys. 103, 114104 (2008)CrossRef
19.
go back to reference Y. Wang, C.W. Nan, Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin films. J. Appl. Phys. 103, 024103 (2008)CrossRef Y. Wang, C.W. Nan, Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin films. J. Appl. Phys. 103, 024103 (2008)CrossRef
20.
go back to reference S. Saxin, C.S. Knee, Crystal structure of Bi1−xTbxFeO3 from high-resolution neutron diffraction. J. Solid State Chem. 184, 1576–1579 (2011)CrossRef S. Saxin, C.S. Knee, Crystal structure of Bi1−xTbxFeO3 from high-resolution neutron diffraction. J. Solid State Chem. 184, 1576–1579 (2011)CrossRef
21.
go back to reference J. Zhang, Y.J. Wu, X.K. Chen, X.J. Chen, Structural evolution and magnetization enhancement of Bi1−xTbxFeO3. J. Phys. Chem. Solids 74, 849–853 (2013)CrossRef J. Zhang, Y.J. Wu, X.K. Chen, X.J. Chen, Structural evolution and magnetization enhancement of Bi1−xTbxFeO3. J. Phys. Chem. Solids 74, 849–853 (2013)CrossRef
22.
go back to reference G.S. Lotey, N.K. Verma, Magnetoelectric coupling in multiferroic Tb-doped BiFeO3 nanoparticles. Mater. Lett. 111, 55–58 (2013)CrossRef G.S. Lotey, N.K. Verma, Magnetoelectric coupling in multiferroic Tb-doped BiFeO3 nanoparticles. Mater. Lett. 111, 55–58 (2013)CrossRef
23.
go back to reference M. Muneeswaran, P. Jegatheesan, M. Gopiraman, I.S. Kim, N.V. Giridharan, Structural, optical, and multiferroic properties of single phased BiFeO3. Appl. Phys. A 114, 853–859 (2014)CrossRef M. Muneeswaran, P. Jegatheesan, M. Gopiraman, I.S. Kim, N.V. Giridharan, Structural, optical, and multiferroic properties of single phased BiFeO3. Appl. Phys. A 114, 853–859 (2014)CrossRef
24.
go back to reference S. Kumar, Structural, dielectric and magnetic characterization of large scale template synthesized Gd doped BiFeO3 nanowires. J. Mater. Sci.: Mater. Electron. 24, 2112–2115 (2013) S. Kumar, Structural, dielectric and magnetic characterization of large scale template synthesized Gd doped BiFeO3 nanowires. J. Mater. Sci.: Mater. Electron. 24, 2112–2115 (2013)
25.
go back to reference K.S. Nalwa, A. Garg, Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite. J. Appl. Phys. 103, 044101 (2008)CrossRef K.S. Nalwa, A. Garg, Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite. J. Appl. Phys. 103, 044101 (2008)CrossRef
26.
go back to reference I. Levin, S. Karimi, V. Provenzano, C.L. Dennis, H. Wu, T. Comyn, J. Stevenson, I.S. Ronald, M. Reaney, Reorientation of magnetic dipoles at the antiferroelectric–paraelectric phase transition of Bi1−xNdxFeO3 (0.15 ≤ x ≤ 0.25). Phys. Rev. B 81, 020103R (2010)CrossRef I. Levin, S. Karimi, V. Provenzano, C.L. Dennis, H. Wu, T. Comyn, J. Stevenson, I.S. Ronald, M. Reaney, Reorientation of magnetic dipoles at the antiferroelectric–paraelectric phase transition of Bi1−xNdxFeO3 (0.15 ≤ x ≤ 0.25). Phys. Rev. B 81, 020103R (2010)CrossRef
27.
go back to reference J.S. Lee, R.J. De Angelis, X-ray diffraction patterns from anocrystalline binary alloys. Nanostruct. Mater. 7, 805–812 (1996)CrossRef J.S. Lee, R.J. De Angelis, X-ray diffraction patterns from anocrystalline binary alloys. Nanostruct. Mater. 7, 805–812 (1996)CrossRef
28.
go back to reference A. Watcharapasorn, S. Jiansirisomboon, Grain growth kinetics in Dy-doped Bi0.5Na0.5TiO3 ceramics. Ceram. Int. 34, 769–772 (2008)CrossRef A. Watcharapasorn, S. Jiansirisomboon, Grain growth kinetics in Dy-doped Bi0.5Na0.5TiO3 ceramics. Ceram. Int. 34, 769–772 (2008)CrossRef
29.
go back to reference F.Z. Qian, J.S. Jiang, S.Z. Guo, D.M. Jiang, W.G. Zhang, Multiferroic properties of Bi1−xDyxFeO3 nanoparticles. J. Appl. Phys. 106, 084312 (2009)CrossRef F.Z. Qian, J.S. Jiang, S.Z. Guo, D.M. Jiang, W.G. Zhang, Multiferroic properties of Bi1−xDyxFeO3 nanoparticles. J. Appl. Phys. 106, 084312 (2009)CrossRef
30.
go back to reference J. Liu, Y. Lu, J. Liu, X. Yang, X. Yu, Investigation of near infrared reflectance by tuning the shape of SnO2 nanoparticles. J. Alloys Compd. 496, 261–264 (2010)CrossRef J. Liu, Y. Lu, J. Liu, X. Yang, X. Yu, Investigation of near infrared reflectance by tuning the shape of SnO2 nanoparticles. J. Alloys Compd. 496, 261–264 (2010)CrossRef
31.
go back to reference P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J. Phys. Chem. Solids 75, 105–108 (2014)CrossRef P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J. Phys. Chem. Solids 75, 105–108 (2014)CrossRef
32.
go back to reference A. Mukherjee, S.M. Hossain, M. Pal, S. Basu, Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles. Appl. Nanosci. 2, 305–310 (2012)CrossRef A. Mukherjee, S.M. Hossain, M. Pal, S. Basu, Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles. Appl. Nanosci. 2, 305–310 (2012)CrossRef
33.
go back to reference M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo, Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 88, 042907 (2006)CrossRef M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo, Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 88, 042907 (2006)CrossRef
34.
go back to reference S.K. Pradhan, Raman and electrical studies of multiferroic BiFeO3. J. Mater. Sci.: Mater. Electron. 24, 3581–3586 (2013) S.K. Pradhan, Raman and electrical studies of multiferroic BiFeO3. J. Mater. Sci.: Mater. Electron. 24, 3581–3586 (2013)
35.
go back to reference P.J. Klar, T. Rentschler, Variation of the soft modes with composition in the Raman spectra of charge-compensated series of n = 2 and 3 Aurivillius phases. Solid State Commun. 103, 341–345 (1997)CrossRef P.J. Klar, T. Rentschler, Variation of the soft modes with composition in the Raman spectra of charge-compensated series of n = 2 and 3 Aurivillius phases. Solid State Commun. 103, 341–345 (1997)CrossRef
36.
go back to reference G. Dong, G. Tann, W. Liu, A. Xia, H. Ren, Crystal structure and highly enhanced ferroelectric properties of (Tb, Cr) co-doped BiFeO3 thin films fabricated by a sol–gel method. Ceram. Int. 40, 1919–1925 (2014)CrossRef G. Dong, G. Tann, W. Liu, A. Xia, H. Ren, Crystal structure and highly enhanced ferroelectric properties of (Tb, Cr) co-doped BiFeO3 thin films fabricated by a sol–gel method. Ceram. Int. 40, 1919–1925 (2014)CrossRef
37.
go back to reference A. Sacuto, J. Cayssol, P. Monod, D. Colson, Electronic Raman scattering on the under doped HgBa2Ca2Cu3O+δ8 high-Tc superconductor: the symmetry of the order parameter. Phys. Rev. B 61, 7122 (2000)CrossRef A. Sacuto, J. Cayssol, P. Monod, D. Colson, Electronic Raman scattering on the under doped HgBa2Ca2Cu3O+δ8 high-Tc superconductor: the symmetry of the order parameter. Phys. Rev. B 61, 7122 (2000)CrossRef
38.
go back to reference Y.J. Jiang, L.Z. Zeng, R.P. Wang, Y. Zhu, Y.L. Liu, Fundamental and second-order Raman spectra of BaTiO3. J. Raman Spectrosc. 27, 31–34 (1996)CrossRef Y.J. Jiang, L.Z. Zeng, R.P. Wang, Y. Zhu, Y.L. Liu, Fundamental and second-order Raman spectra of BaTiO3. J. Raman Spectrosc. 27, 31–34 (1996)CrossRef
39.
go back to reference M. Arora, S. Chauhan, P.C. Sati, M. Kumar, S. Chhoker, Evidence of spin-two phonon coupling and improved multiferroic behaviour of Bi1−xDyxFeO3 nanoparticles. Ceram. Int. 40, 13347–13356 (2014)CrossRef M. Arora, S. Chauhan, P.C. Sati, M. Kumar, S. Chhoker, Evidence of spin-two phonon coupling and improved multiferroic behaviour of Bi1−xDyxFeO3 nanoparticles. Ceram. Int. 40, 13347–13356 (2014)CrossRef
40.
go back to reference P. Pandit, S. Satapathy, P.K. Gupta, V.G. Sathe, Effect of coalesce doping of Nd and La on structure, dielectric, and magnetic properties of BiFeO3. J. Appl. Phys. 106, 114105 (2009)CrossRef P. Pandit, S. Satapathy, P.K. Gupta, V.G. Sathe, Effect of coalesce doping of Nd and La on structure, dielectric, and magnetic properties of BiFeO3. J. Appl. Phys. 106, 114105 (2009)CrossRef
41.
go back to reference M.O. Ramirez, M. Krishnamurthi, S. Denev, A. Kumar, S.Y. Yang, Y.H. Chu, E. Saiz, J. Seidel, A.P. Pyatakov, A. Bush, D. Viehland, J. Orenstein, R. Ramesh, V. Gopalan, Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO3. Appl. Phys. Lett. 92, 022511 (2008)CrossRef M.O. Ramirez, M. Krishnamurthi, S. Denev, A. Kumar, S.Y. Yang, Y.H. Chu, E. Saiz, J. Seidel, A.P. Pyatakov, A. Bush, D. Viehland, J. Orenstein, R. Ramesh, V. Gopalan, Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO3. Appl. Phys. Lett. 92, 022511 (2008)CrossRef
42.
go back to reference C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)CrossRef C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)CrossRef
43.
go back to reference S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, Y. Ma, Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics. J. Appl. Phys. 111, 074105 (2012)CrossRef S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, Y. Ma, Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics. J. Appl. Phys. 111, 074105 (2012)CrossRef
44.
go back to reference K. Prashanthi, B.A. Chalke, K.C. Barick, A. Das, I. Dhiman, P. Palkar, Enhancement in multiferroic properties of system with removal of La. Solid State Commun. 149, 188–191 (2009)CrossRef K. Prashanthi, B.A. Chalke, K.C. Barick, A. Das, I. Dhiman, P. Palkar, Enhancement in multiferroic properties of system with removal of La. Solid State Commun. 149, 188–191 (2009)CrossRef
45.
go back to reference S.K. Singh, K. Maruyama, H. Ishiwara, Reduced leakage current in La and Ni codoped BiFeO3 thin films. Appl. Phys. Lett. 91, 112913 (2007)CrossRef S.K. Singh, K. Maruyama, H. Ishiwara, Reduced leakage current in La and Ni codoped BiFeO3 thin films. Appl. Phys. Lett. 91, 112913 (2007)CrossRef
46.
go back to reference S. Pattanayak, R.N.P. Choudhary, D. Pattanayak, A comparative study of structural, electrical and magnetic properties rare-earth (Dy and Nd)-modified BiFeO3. J. Mater. Sci.: Mater. Electron. 25, 3854–3861 (2014) S. Pattanayak, R.N.P. Choudhary, D. Pattanayak, A comparative study of structural, electrical and magnetic properties rare-earth (Dy and Nd)-modified BiFeO3. J. Mater. Sci.: Mater. Electron. 25, 3854–3861 (2014)
47.
go back to reference G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film. Appl. Phys. Lett. 92, 192905 (2008)CrossRef G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film. Appl. Phys. Lett. 92, 192905 (2008)CrossRef
48.
go back to reference W. Cai, C. Fu, W. Hu, G. Chen, X. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics. J. Alloys Compd. 554, 64–71 (2013)CrossRef W. Cai, C. Fu, W. Hu, G. Chen, X. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics. J. Alloys Compd. 554, 64–71 (2013)CrossRef
49.
go back to reference N. Li, J. Wu, Y. Jiang, Z. Xie, L. Zheng, Z.G. Ye, Structure and multiferroic properties of Bi(1−x)DyxFe0.90Mg0.05Ti0.05O3 solid solution. J. Appl. Phys. 113, 054102 (2013)CrossRef N. Li, J. Wu, Y. Jiang, Z. Xie, L. Zheng, Z.G. Ye, Structure and multiferroic properties of Bi(1−x)DyxFe0.90Mg0.05Ti0.05O3 solid solution. J. Appl. Phys. 113, 054102 (2013)CrossRef
50.
go back to reference P. Uniyal, K.L. Yadav, Room temperature multiferroic properties of Eu doped BiFeO3. J. Appl. Phys. 105, 07D914 (2009)CrossRef P. Uniyal, K.L. Yadav, Room temperature multiferroic properties of Eu doped BiFeO3. J. Appl. Phys. 105, 07D914 (2009)CrossRef
51.
go back to reference T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)CrossRef T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)CrossRef
Metadata
Title
Effect of Tb substitution on structural, optical, electrical and magnetic properties of BiFeO3
Authors
M. Muneeswaran
Radhalayam Dhanalakshmi
N. V. Giridharan
Publication date
01-06-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 6/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-2909-3

Other articles of this Issue 6/2015

Journal of Materials Science: Materials in Electronics 6/2015 Go to the issue