Skip to main content
Top

2020 | OriginalPaper | Chapter

Effect of Temperature on Magnesium Vapor Condensation in Inert Carrier Gas

Authors : Jibiao Han, Ting’an Zhang, Daxue Fu, Junhua Guo, Zonghui Ji, Zhihe Dou

Published in: Magnesium Technology 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The process of magnesium extraction by silicothermic process is in vacuum, which leads to discontinuous production. The condensation of magnesium vapor in inert gas is an important step to realize continuous magnesium production. In this paper, the condensation behavior of magnesium vapor in inert carrier gas is studied. The effects of temperatures on the condensation phenomenon, temperature in condensation zone, direct recovery rate of condensation, and microstructure of magnesium vapor were investigated. The results show that three different condensation appearance can be obtained by magnesium condensation in argon gas conditions, and the size has significant difference, and large particles of condensed magnesium are more than 500 μm, small particles of magnesium from 50 to 100 μm and powdered magnesium less than 10 μm. With the increase of temperature, the initial condensation temperature of magnesium vapor increases from 680.2 to 745.1 °C, small particles of magnesium increases, while the powdered magnesium keeps constant; the direct recovery rate of large particles of magnesium decreases from 27.1 to 15.4%, and the direct recovery rate of condensed magnesium of small particles increases; higher purity of magnesium can be obtained at different temperatures, which can provide theoretical support for continuous magnesium production process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hanko G, Antrekowitsch H, Ebner P (2002) Recycling automotive magnesium scrap. JOM 54(2): 51–54. Hanko G, Antrekowitsch H, Ebner P (2002) Recycling automotive magnesium scrap. JOM 54(2): 51–54.
2.
go back to reference Li R, Pan W, Sano M, et al. (2002) Kinetics of reduction of magnesia with carbon. Thermochimica Acta 390(1):145–151. Li R, Pan W, Sano M, et al. (2002) Kinetics of reduction of magnesia with carbon. Thermochimica Acta 390(1):145–151.
3.
go back to reference Zhu Z, Zhang L. W, Sen-Dong G. U (2012) Stress relaxation test of Hastelloy C-276 alloy and its creep constitutive equation. Chinese Journal of Nonferrous Metals 22(4):1063–1067. Zhu Z, Zhang L. W, Sen-Dong G. U (2012) Stress relaxation test of Hastelloy C-276 alloy and its creep constitutive equation. Chinese Journal of Nonferrous Metals 22(4):1063–1067.
4.
go back to reference Chao W, Chao Z, Shao J. Z, et al. (2015) The Effect of CaF2 on the Magnesium Production with Silicothermal Process. International Journal of Mineral Processing 142. Chao W, Chao Z, Shao J. Z, et al. (2015) The Effect of CaF2 on the Magnesium Production with Silicothermal Process. International Journal of Mineral Processing 142.
5.
go back to reference Wada Y, Fujii S, Suzuki E, et al. (2017) Smelting Magnesium Metal using a Microwave Pidgeon Method. Scientific Reports 7:46512. Wada Y, Fujii S, Suzuki E, et al. (2017) Smelting Magnesium Metal using a Microwave Pidgeon Method. Scientific Reports 7:46512.
6.
go back to reference Fu D. X, Feng N. X, Wang Y. W (2012) Study on the Kinetics and Mechanism of Grain Growth during the Thermal Decomposition of Magnesite. Bulletin of the Korean Chemical Society 33(8):2483–2488. Fu D. X, Feng N. X, Wang Y. W (2012) Study on the Kinetics and Mechanism of Grain Growth during the Thermal Decomposition of Magnesite. Bulletin of the Korean Chemical Society 33(8):2483–2488.
7.
go back to reference Fu D. X, Wang Y. W, Peng J. P, et al. (2014) Mechanism of extracting magenesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction. Transactions of Nonferrous Metals Society of China 24(8):2677–2686. Fu D. X, Wang Y. W, Peng J. P, et al. (2014) Mechanism of extracting magenesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction. Transactions of Nonferrous Metals Society of China 24(8):2677–2686.
8.
go back to reference Fu D. X, Zhang T. A, Guan L. K, et al. (2016) Magnesium Production by Silicothermic Reduction of Dolime in Pre-prepared Dolomite Pellets. JOM 68(12):3208–3213. Fu D. X, Zhang T. A, Guan L. K, et al. (2016) Magnesium Production by Silicothermic Reduction of Dolime in Pre-prepared Dolomite Pellets. JOM 68(12):3208–3213.
9.
go back to reference Fu D. X, Feng N. X, Wang Y. W, et al. (2014) Kinetics of extracting magnesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction. Transactions of Nonferrous Metals Society of China 24(3):839–847. Fu D. X, Feng N. X, Wang Y. W, et al. (2014) Kinetics of extracting magnesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction. Transactions of Nonferrous Metals Society of China 24(3):839–847.
10.
go back to reference Tian Y, Xu B. Q, Yang C. B, et al. (2014) Analysis of Magnesia Carbothermic Reduction Process in Vacuum. Metallurgical & Materials Transactions B 45(5):1936–1941. Tian Y, Xu B. Q, Yang C. B, et al. (2014) Analysis of Magnesia Carbothermic Reduction Process in Vacuum. Metallurgical & Materials Transactions B 45(5):1936–1941.
11.
go back to reference Tian Y, Tao Q, Yang B, et al. (2012) Behavior Analysis of CaF2 in Magnesia Carbothermic Reduction Process in Vacuum. Metallurgical & Materials Transactions B 43(3):657–661. Tian Y, Tao Q, Yang B, et al. (2012) Behavior Analysis of CaF2 in Magnesia Carbothermic Reduction Process in Vacuum. Metallurgical & Materials Transactions B 43(3):657–661.
12.
go back to reference Liu H, Tian Y, Yang B, et al. (2015) Condensation of Mg-vapor in vacuum carbothermic reduction of magnesia. Journal of Vacuum Science and Technology 35(7):867–871. Liu H, Tian Y, Yang B, et al. (2015) Condensation of Mg-vapor in vacuum carbothermic reduction of magnesia. Journal of Vacuum Science and Technology 35(7):867–871.
13.
go back to reference Tian Y, Xu B. Q, Yang C. B, et al. (2016) Study on mechanism of magnesia production by reversion reaction process in vacuum, Paper presented at the 145th TMS Annual Meeting, Nashville, TN, 14–18 February 14 2016. Tian Y, Xu B. Q, Yang C. B, et al. (2016) Study on mechanism of magnesia production by reversion reaction process in vacuum, Paper presented at the 145th TMS Annual Meeting, Nashville, TN, 14–18 February 14 2016.
14.
go back to reference Yang C. B, Yang T, Tao Q. U, et al. (2014) Magnesium vapor nucleation in phase transitions and condensation under vacuum conditions. Transactions of Nonferrous Metals Society of China 24(2):561–569. Yang C. B, Yang T, Tao Q. U, et al. (2014) Magnesium vapor nucleation in phase transitions and condensation under vacuum conditions. Transactions of Nonferrous Metals Society of China 24(2):561–569.
15.
go back to reference Yang C. B, Tian Y, Qu T, et al. (2014) Analysis of the behavior of magnesium and CO vapor in the carbothermic reduction of magnesia in a vacuum. Journal of Magnesium and Alloys 2(1):50–58. Yang C. B, Tian Y, Qu T, et al. (2014) Analysis of the behavior of magnesium and CO vapor in the carbothermic reduction of magnesia in a vacuum. Journal of Magnesium and Alloys 2(1):50–58.
16.
go back to reference Xiong N, Tian Y, Yang B, et al. (2018) Volatilization and condensation behaviours of Mg under vacuum. Vacuum 156:463–468. Xiong N, Tian Y, Yang B, et al. (2018) Volatilization and condensation behaviours of Mg under vacuum. Vacuum 156:463–468.
17.
go back to reference Xiong N, Tian Y, Yang B, et al. (2019) Results of recent investigations of magnesia carbothermal reduction in vacuum. Vacuum 160:213–225. Xiong N, Tian Y, Yang B, et al. (2019) Results of recent investigations of magnesia carbothermal reduction in vacuum. Vacuum 160:213–225.
18.
go back to reference Brooks G, Trang S, Witt P, et al. (2006) The carbothermic route to magnesium. JOM 58(5):51–55. Brooks G, Trang S, Witt P, et al. (2006) The carbothermic route to magnesium. JOM 58(5):51–55.
19.
go back to reference Bin G. Y, Wang Y, Wang S. Y, et al. (2015) Effect of Argon Flow Rate on the Condensation of Magnesium Vapor from Carbothermic Reduction of Magnesia. Magnesium Technology:61–65. Bin G. Y, Wang Y, Wang S. Y, et al. (2015) Effect of Argon Flow Rate on the Condensation of Magnesium Vapor from Carbothermic Reduction of Magnesia. Magnesium Technology:61–65.
20.
go back to reference Dai Y. N, Yang B (2000) The vacuum metallurgy of nonferrous metals. Metallurgical Industry Press, Beijing. Dai Y. N, Yang B (2000) The vacuum metallurgy of nonferrous metals. Metallurgical Industry Press, Beijing.
21.
go back to reference Minevich E, Moayed A, Wacksman J, et al. (1956) Principles of physical metallurgy. D.VAN nostrand company, New York. Minevich E, Moayed A, Wacksman J, et al. (1956) Principles of physical metallurgy. D.VAN nostrand company, New York.
Metadata
Title
Effect of Temperature on Magnesium Vapor Condensation in Inert Carrier Gas
Authors
Jibiao Han
Ting’an Zhang
Daxue Fu
Junhua Guo
Zonghui Ji
Zhihe Dou
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36647-6_47

Premium Partners