Skip to main content
Top
Published in: Acta Mechanica 10/2020

17-07-2020 | Original Paper

Effect of the gradient on the deflection of functionally graded microcantilever beams with surface stress

Authors: Xu-Long Peng, Li Zhang, Zi-Xuan Yang, Zhan-Yong Feng, Bing Zhao, Xian-Fang Li

Published in: Acta Mechanica | Issue 10/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The surface stress-induced deflection of a microcantilever beam with arbitrary axial nonhomogeneity and varying cross section is investigated. The surface stresses are assumed to be uniformly distributed on the upper surface of the beam. Based on the small deformation and Euler–Bernoulli beam theory, the second-order integral–differential governing equation is derived. A simple Taylor series expansion method is proposed to calculate the static deformation. The approximate solution of functionally graded microbeams can degenerate into the solution of homogeneous microbeams, and the explicit expressions for the static deflection, slope angle curvature, and surface stress are derived. Particularly, the influence of the gradient parameters on the static deformation of functionally graded rectangular and triangular microbeams is presented by Figures primarily. Obtained results indicate that choosing an appropriate gradient parameter is beneficial for different surface stresses. The proposed method and derived solution can be used as a theoretical benchmark for validating the obtained results of microcantilever beams as micro-mechanical sensors and atomic force microscopy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Liao, H.S., Juang, B.J., Chang, W.C., Lai, W.C., Huang, K.Y., Chang, C.S.: Rotational positioning system adapted to atomic force microscope for measuring anisotropic surface properties. Rev. Sci. Instrum. 82(11), 113710 (2011)CrossRef Liao, H.S., Juang, B.J., Chang, W.C., Lai, W.C., Huang, K.Y., Chang, C.S.: Rotational positioning system adapted to atomic force microscope for measuring anisotropic surface properties. Rev. Sci. Instrum. 82(11), 113710 (2011)CrossRef
2.
go back to reference Huang, G.Y., Liu, J.P.: Effect of surface stress and surface mass on elastic vibrations of nanoparticles. Acta Mech. 224(5), 985–994 (2013)MathSciNetCrossRef Huang, G.Y., Liu, J.P.: Effect of surface stress and surface mass on elastic vibrations of nanoparticles. Acta Mech. 224(5), 985–994 (2013)MathSciNetCrossRef
3.
go back to reference Arlett, J.L., Myers, E.B., Roukes, M.L.: Comparative advantages of mechanical biosensors. Nature. Nanotech. 6(4), 203–215 (2011)CrossRef Arlett, J.L., Myers, E.B., Roukes, M.L.: Comparative advantages of mechanical biosensors. Nature. Nanotech. 6(4), 203–215 (2011)CrossRef
4.
go back to reference Zhao, B., Chen, J., Liu, T., Song, W.H., Zhang, J.R.: A new Timoshenko beam model based on modified gradient elasticity: shearing effect and size effect of micro-beam. Compos. Struct. 223, 110946 (2019)CrossRef Zhao, B., Chen, J., Liu, T., Song, W.H., Zhang, J.R.: A new Timoshenko beam model based on modified gradient elasticity: shearing effect and size effect of micro-beam. Compos. Struct. 223, 110946 (2019)CrossRef
5.
go back to reference Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. J. Mater. Eng. 56, 930–933 (2018) Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. J. Mater. Eng. 56, 930–933 (2018)
6.
go back to reference Jaschke, M., Butt, H.-J., Manne, S., Gaub, H.E., Hasemann, O., Krimphove, F., Wolff, E.K.: The atomic force microscope as a tool to study and manipulate local surface properties. Biosens. Bioelectron. 11(6–7), 601–612 (2015) Jaschke, M., Butt, H.-J., Manne, S., Gaub, H.E., Hasemann, O., Krimphove, F., Wolff, E.K.: The atomic force microscope as a tool to study and manipulate local surface properties. Biosens. Bioelectron. 11(6–7), 601–612 (2015)
7.
go back to reference Ansari, M.Z., Cho, C.: On accuracy of sensitivity relations for piezoresistive microcantilevers used in surface stress studies. Int. J. Pr. Eng. Man. 15(10), 20130449–2140 (2014) Ansari, M.Z., Cho, C.: On accuracy of sensitivity relations for piezoresistive microcantilevers used in surface stress studies. Int. J. Pr. Eng. Man. 15(10), 20130449–2140 (2014)
8.
go back to reference Zhang, Y., Zhuo, L.J., Zhao, H.S.: Determining the effects of surface elasticity and surface stress by measuring the shifts of resonant frequencies. Math. Phys. Eng. Sci. 469(2159), 65–79 (2013)MATH Zhang, Y., Zhuo, L.J., Zhao, H.S.: Determining the effects of surface elasticity and surface stress by measuring the shifts of resonant frequencies. Math. Phys. Eng. Sci. 469(2159), 65–79 (2013)MATH
9.
go back to reference Sader, J.E.: Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: V-shaped plates. J. Appl. Phys. 91, 9354–9361 (2002)CrossRef Sader, J.E.: Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: V-shaped plates. J. Appl. Phys. 91, 9354–9361 (2002)CrossRef
10.
go back to reference Li, X.F., Peng, X.L.: Theoretical analysis of surface stress for a microcantilever with varying widths. J. Phys. D Appl. Phys. 41, 065301 (2008)CrossRef Li, X.F., Peng, X.L.: Theoretical analysis of surface stress for a microcantilever with varying widths. J. Phys. D Appl. Phys. 41, 065301 (2008)CrossRef
11.
go back to reference Stoney, G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A 82, 2–9 (1909) Stoney, G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A 82, 2–9 (1909)
12.
go back to reference Javier, T.D.M.F., Ruz, M., José, J., Pini, V., Kosaka, P.M., Calleja, M.: Quantification of the surface stress in microcantilever biosensors: revisiting Stoney’s equation. Nanotechnology 23(47), 475702 (2012)CrossRef Javier, T.D.M.F., Ruz, M., José, J., Pini, V., Kosaka, P.M., Calleja, M.: Quantification of the surface stress in microcantilever biosensors: revisiting Stoney’s equation. Nanotechnology 23(47), 475702 (2012)CrossRef
13.
go back to reference Sohi, A.N., Nieva, P.M.: Frequency response of curved bilayer microcantilevers with applications to surface stress measurement. J. Appl. Phys. 119(4), 044503 (2016)CrossRef Sohi, A.N., Nieva, P.M.: Frequency response of curved bilayer microcantilevers with applications to surface stress measurement. J. Appl. Phys. 119(4), 044503 (2016)CrossRef
14.
go back to reference Knowles, K.M.: The biaxial moduli of cubic materials subjected to an equi-biaxial elastic strain. J. Elast. 124(1), 1–25 (2016)MathSciNetCrossRef Knowles, K.M.: The biaxial moduli of cubic materials subjected to an equi-biaxial elastic strain. J. Elast. 124(1), 1–25 (2016)MathSciNetCrossRef
15.
go back to reference Blech, I.A., Blech, I., Finot, M.: The biaxial moduli of cubic materials subjected to an equi-biaxial elastic strain. J. Appl. Phys. 97(11), 113525 (2005)CrossRef Blech, I.A., Blech, I., Finot, M.: The biaxial moduli of cubic materials subjected to an equi-biaxial elastic strain. J. Appl. Phys. 97(11), 113525 (2005)CrossRef
16.
go back to reference Evans, D.R., Craig, V.S.J.: The origin of surface stress induced by adsorption of iodine on gold. J. Phys. Chem. B. 110(39), 19507–19514 (2006)CrossRef Evans, D.R., Craig, V.S.J.: The origin of surface stress induced by adsorption of iodine on gold. J. Phys. Chem. B. 110(39), 19507–19514 (2006)CrossRef
17.
go back to reference Sader, J.E.: Surface stress induced deflections of force microscope: rectangular plates. J. Appl. Phys. 89(5), 2911–2921 (2001)CrossRef Sader, J.E.: Surface stress induced deflections of force microscope: rectangular plates. J. Appl. Phys. 89(5), 2911–2921 (2001)CrossRef
18.
go back to reference Zeng, X., Deng, J., Luo, X.: Deflection of a cantilever rectangular plate induced by surface stress with applications to surface stress measurement. J. Appl. Phys. 111(8), 1–8 (2012)CrossRef Zeng, X., Deng, J., Luo, X.: Deflection of a cantilever rectangular plate induced by surface stress with applications to surface stress measurement. J. Appl. Phys. 111(8), 1–8 (2012)CrossRef
19.
go back to reference Zhang, Y., Ren, Q., Zhao, Y.P.: Modelling analysis surface stress on a rectangular cantilever of beam. J. Phys. D Appl. Phys. 37(15), 2140–2145 (2004)CrossRef Zhang, Y., Ren, Q., Zhao, Y.P.: Modelling analysis surface stress on a rectangular cantilever of beam. J. Phys. D Appl. Phys. 37(15), 2140–2145 (2004)CrossRef
20.
go back to reference Ansari, M.Z., Cho, C.: Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors. Sensors 9(8), 6046–6057 (2009)CrossRef Ansari, M.Z., Cho, C.: Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors. Sensors 9(8), 6046–6057 (2009)CrossRef
21.
go back to reference Zhang, G.M., Zhao, L.B., Jiang, Z.D., Yang, S.M., Zhao, Y.L., Huang, E.Z., Hebibul, R., Wang, X.P., Liu, Z.G.J.: Surface stress-induced deflection of a microcantilever with various widths and overall microcantilever sensitivity enhancement via geometry modification. J. Phys. D Appl. Phys. 44(42), 425402 (2011)CrossRef Zhang, G.M., Zhao, L.B., Jiang, Z.D., Yang, S.M., Zhao, Y.L., Huang, E.Z., Hebibul, R., Wang, X.P., Liu, Z.G.J.: Surface stress-induced deflection of a microcantilever with various widths and overall microcantilever sensitivity enhancement via geometry modification. J. Phys. D Appl. Phys. 44(42), 425402 (2011)CrossRef
22.
go back to reference Shafiei, N., Kazemi, M.M., Ghadiri, M.: Nonlinear vibration of axially functionally graded tapered microbeams. Int. J. Eng. Sci. 102, 12–26 (2016)MathSciNetCrossRef Shafiei, N., Kazemi, M.M., Ghadiri, M.: Nonlinear vibration of axially functionally graded tapered microbeams. Int. J. Eng. Sci. 102, 12–26 (2016)MathSciNetCrossRef
23.
go back to reference Ramesh, M.N.V., Rao, N.M.: Free vibration analysis of pre-twisted rotating FGM beams. Int. J. Mech. Mater. Des. 9(4), 367–383 (2013)CrossRef Ramesh, M.N.V., Rao, N.M.: Free vibration analysis of pre-twisted rotating FGM beams. Int. J. Mech. Mater. Des. 9(4), 367–383 (2013)CrossRef
24.
go back to reference Su, J., Xiang, Y., Ke, L.L., Wang, Y.S.: Surface effect on static bending of functionally graded porous nanobeams based on Reddy’s beam theory. Int. J. Struct. Stab. Dyn. 19(06), 1950062 (2019)MathSciNetCrossRef Su, J., Xiang, Y., Ke, L.L., Wang, Y.S.: Surface effect on static bending of functionally graded porous nanobeams based on Reddy’s beam theory. Int. J. Struct. Stab. Dyn. 19(06), 1950062 (2019)MathSciNetCrossRef
25.
go back to reference Ke, L.L., Wang, Y.S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93(2), 342–350 (2011)CrossRef Ke, L.L., Wang, Y.S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93(2), 342–350 (2011)CrossRef
26.
go back to reference Li, X.F.: A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J. Sound. Vib. 318(4–5), 1210–1229 (2008)CrossRef Li, X.F.: A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J. Sound. Vib. 318(4–5), 1210–1229 (2008)CrossRef
27.
go back to reference Benatta, M.A., Mechab, I., Tounsi, A., Bedia, E.A.A.: Static analysis of functionally graded short beams including warping and shear deformation effects. Comput. Mater. Sci. 44(2), 765–773 (2008)CrossRef Benatta, M.A., Mechab, I., Tounsi, A., Bedia, E.A.A.: Static analysis of functionally graded short beams including warping and shear deformation effects. Comput. Mater. Sci. 44(2), 765–773 (2008)CrossRef
28.
go back to reference Chen, G.Y., Thundat, T., Wachter, E.A., Warmack, R.J.: Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys. 77(8), 3618–3622 (1995)CrossRef Chen, G.Y., Thundat, T., Wachter, E.A., Warmack, R.J.: Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys. 77(8), 3618–3622 (1995)CrossRef
29.
go back to reference Mcfarland, A.W., Poggi, M.A., Doyle, M.J., Bottomley, L.A., Colton, J.S.: Influence of surface stress on the resonance behavior of microcantilevers. J. Appl. Phys. 87(5), 053505 (2005) Mcfarland, A.W., Poggi, M.A., Doyle, M.J., Bottomley, L.A., Colton, J.S.: Influence of surface stress on the resonance behavior of microcantilevers. J. Appl. Phys. 87(5), 053505 (2005)
30.
go back to reference Freund, L.B., Floro, J.A., Chason, E.: Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl. Phys. Lett. 74(14), 1987–1989 (1999)CrossRef Freund, L.B., Floro, J.A., Chason, E.: Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl. Phys. Lett. 74(14), 1987–1989 (1999)CrossRef
31.
go back to reference Evans, D.R., Craig, V.S.J.: Incremental viscosity bynon-equilibrium molecular dynamics and the Eyring model. J. Phys. Chem. 110, 19507–19514 (2006)CrossRef Evans, D.R., Craig, V.S.J.: Incremental viscosity bynon-equilibrium molecular dynamics and the Eyring model. J. Phys. Chem. 110, 19507–19514 (2006)CrossRef
32.
go back to reference Li, X.F.: Approximate solution of linear ordinary differential equations with variable coefficients. Math. Comput. Simulat. 75(3–4), 113–25 (2007)MathSciNetCrossRef Li, X.F.: Approximate solution of linear ordinary differential equations with variable coefficients. Math. Comput. Simulat. 75(3–4), 113–25 (2007)MathSciNetCrossRef
33.
34.
go back to reference Moulin, A.M., O’Shea, S.J., Welland, M.E.: Microcantilever-based biosensors. Ultramicroscopy 82(1), 23–31 (2000)CrossRef Moulin, A.M., O’Shea, S.J., Welland, M.E.: Microcantilever-based biosensors. Ultramicroscopy 82(1), 23–31 (2000)CrossRef
35.
go back to reference Li, X.F., Peng, X.L.: A pressurized functionally graded hollow cylinder with arbitrarily varying material properties. J. Elast. 96(1), 81–95 (2009)MathSciNetCrossRef Li, X.F., Peng, X.L.: A pressurized functionally graded hollow cylinder with arbitrarily varying material properties. J. Elast. 96(1), 81–95 (2009)MathSciNetCrossRef
36.
go back to reference Chakraverty, S., Pradhan, K.K.: Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. Aerosp. Sci. Technol. 36, 132–156 (2014)CrossRef Chakraverty, S., Pradhan, K.K.: Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. Aerosp. Sci. Technol. 36, 132–156 (2014)CrossRef
37.
go back to reference Li, X.F., Kang, Y.A., Wu, J.X.: Exact frequency equations of free vibration of exponentially functionally graded beams. Appl. Acoust. 74(3), 413–420 (2013)CrossRef Li, X.F., Kang, Y.A., Wu, J.X.: Exact frequency equations of free vibration of exponentially functionally graded beams. Appl. Acoust. 74(3), 413–420 (2013)CrossRef
38.
go back to reference Tang, A.Y., Wu, J.X., Li, X.-F., Lee, K.Y.: Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams. Int. J. Mech. Sci. 89, 1–11 (2014)CrossRef Tang, A.Y., Wu, J.X., Li, X.-F., Lee, K.Y.: Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams. Int. J. Mech. Sci. 89, 1–11 (2014)CrossRef
Metadata
Title
Effect of the gradient on the deflection of functionally graded microcantilever beams with surface stress
Authors
Xu-Long Peng
Li Zhang
Zi-Xuan Yang
Zhan-Yong Feng
Bing Zhao
Xian-Fang Li
Publication date
17-07-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 10/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02759-8

Other articles of this Issue 10/2020

Acta Mechanica 10/2020 Go to the issue

Premium Partners