Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 1/2022

01-01-2022 | STRENGTH AND PLASTICITY

Effect of the Quenching Temperature on the Creep Resistance of 9% Cr–1% W–1% Mo–V–Nb Martensite Steel

Authors: A. E. Fedoseeva, I. S. Nikitin, R. O. Kaibyshev

Published in: Physics of Metals and Metallography | Issue 1/2022

Login to get access
share
SHARE

Abstract

The creep resistance of the 9% Cr–1% W–1% Mo steel subjected to quenching from the temperatures of 1050 and 1150°C, cooling in the air, and further tempering at a temperature of 750°C for 3 h has been studied at a temperature of 650°C and applied stresses of 160, 140, and 120 MPa. An increase in the quenching temperature from 1050 to 1150°C leads to a growth in the average size of prior austenite grains from 25 to 93 µm due to the dissolution of MX carbonitride particles enriched in niobium under exposure in the austenite region. An increase in the size of the prior austenite grains is accompanied by a decrease in the average size of blocks and martensite laths by 17 and 43%, respectively. Moreover, an increased temperature of heating for quenching provides favorable conditions (fraction of boundaries, density of dislocations, and content of doping elements in a solid solution) for the precipitation of carbide М23С6 and carbonitride МХ particles of smaller size under tempering. The improvement of structural hardening due to a decreased size of blocks and martensite laths and dispersion hardening due to nanosized VX particles has a positive effect on the creep resistance by decreasing the minimum creep rate and the duration of the transient creep stage to increase the time until rupture by several times.
Literature
1.
go back to reference F. Abe, T. U. Kern, and R. Viswanathan, Creep-Resistant Steels (Woodhead, Cambridge, 2008). CrossRef F. Abe, T. U. Kern, and R. Viswanathan, Creep-Resistant Steels (Woodhead, Cambridge, 2008). CrossRef
2.
go back to reference R. O. Kaibyshev, V. N. Skorobogatykh, and I. A. Shchen-kova, “New martensitic steels for thermal power plant: Creep resistence,” Phys. Met. Metallogr. 109, 186–200 (2010). CrossRef R. O. Kaibyshev, V. N. Skorobogatykh, and I. A. Shchen-kova, “New martensitic steels for thermal power plant: Creep resistence,” Phys. Met. Metallogr. 109, 186–200 (2010). CrossRef
3.
go back to reference R. Viswanathan and W. Bakker, “Materials for ultrasupercritical coal power plants – boiler materials: Part 1,” J. Mater. Eng. Perform. 10, 81–95 (2001). CrossRef R. Viswanathan and W. Bakker, “Materials for ultrasupercritical coal power plants – boiler materials: Part 1,” J. Mater. Eng. Perform. 10, 81–95 (2001). CrossRef
4.
go back to reference V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “Crystallographic analysis and the mechanism of martensitic transformation in iron alloys,” Fiz. Met. Metalloved. 121, 1142–1161 (2020). V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastlivtsev, “Crystallographic analysis and the mechanism of martensitic transformation in iron alloys,” Fiz. Met. Metalloved. 121, 1142–1161 (2020).
5.
go back to reference V. S. Sagaradze, T. N. Kochetkova, N. V. Kataeva, K. A. Kozlov, V. A. Zavalishin, N. F. Vil’danova, V. S. Ageev, M. V. Leont’eva-Smirnova, and A. A. Nikitina, “Structure and creep of russian reactor steels with a bcc structure,” Phys. Met. Metallogr. 118, 494–506 (2017). CrossRef V. S. Sagaradze, T. N. Kochetkova, N. V. Kataeva, K. A. Kozlov, V. A. Zavalishin, N. F. Vil’danova, V. S. Ageev, M. V. Leont’eva-Smirnova, and A. A. Nikitina, “Structure and creep of russian reactor steels with a bcc structure,” Phys. Met. Metallogr. 118, 494–506 (2017). CrossRef
6.
go back to reference I. Nikitin, A. Fedoseeva, and R. Kaibyshev, “Strengthening mechanisms of creep-resistant 12% Cr–3% Co steel with low N and high B contents,” J. Mater. Sci. 55, 7530–7545 (2020). CrossRef I. Nikitin, A. Fedoseeva, and R. Kaibyshev, “Strengthening mechanisms of creep-resistant 12% Cr–3% Co steel with low N and high B contents,” J. Mater. Sci. 55, 7530–7545 (2020). CrossRef
7.
go back to reference A. E. Fedoseeva, I. S. Nikitin, N. R. Dudova, and R. O. Kaibyshev, “The effect of creep and long annealing conditions on the formation of the Z-phase particles,” Phys. Met. Metallogr. 121, 561–567 (2020). CrossRef A. E. Fedoseeva, I. S. Nikitin, N. R. Dudova, and R. O. Kaibyshev, “The effect of creep and long annealing conditions on the formation of the Z-phase particles,” Phys. Met. Metallogr. 121, 561–567 (2020). CrossRef
8.
go back to reference F. Abe, “Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants,” Sci. Tech. Adv. Mater. 9, No. 013002 (2008). F. Abe, “Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants,” Sci. Tech. Adv. Mater. 9, No. 013002 (2008).
9.
go back to reference K. Suzuki, S. Kumai, Y. Toda, H. Kushima, and K. Kimura, “Two-phase separation of primary MX Carbonitride during tempering in creep resistant 9Cr1MoVNb steel,” ISIJ Int. 43, 104312 (2003). K. Suzuki, S. Kumai, Y. Toda, H. Kushima, and K. Kimura, “Two-phase separation of primary MX Carbonitride during tempering in creep resistant 9Cr1MoVNb steel,” ISIJ Int. 43, 104312 (2003).
10.
go back to reference K. Maruyama, N. Sekido, and K. Yoshimi, “Changes in strengthening mechanisms in creep of 9Cr–1.8W–0.5Mo–VNb steel tested over wide ranges of creep conditions,” ISIJ Int. 190, No. 1089–1094 (2021). K. Maruyama, N. Sekido, and K. Yoshimi, “Changes in strengthening mechanisms in creep of 9Cr–1.8W–0.5Mo–VNb steel tested over wide ranges of creep conditions,” ISIJ Int. 190, No. 1089–1094 (2021).
11.
go back to reference A. Kostka, K-G. Tak, R. J. Hellmig, Y. Estrin, and G. Eggeler, “On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels,” Acta Mater. 55, 539–550 (2007). CrossRef A. Kostka, K-G. Tak, R. J. Hellmig, Y. Estrin, and G. Eggeler, “On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels,” Acta Mater. 55, 539–550 (2007). CrossRef
12.
go back to reference K. Kimura, N. Ohi, K. Shimazu, T. Matsuo, R. Tanaka, and M. Kikuchi, “Effect of prior austenite grain size on high temperature creep properties of Cr–Mo–V rotor steel,” Scr. Metall. 21, 19–22 (1987). CrossRef K. Kimura, N. Ohi, K. Shimazu, T. Matsuo, R. Tanaka, and M. Kikuchi, “Effect of prior austenite grain size on high temperature creep properties of Cr–Mo–V rotor steel,” Scr. Metall. 21, 19–22 (1987). CrossRef
13.
go back to reference A. Fedoseeva, I. Nikitin, E. Tkachev, R. Mishnev, N. Dudova, and R. Kaibyshev, “Effect of alloying on the nucleation and growth of Laves phase in the 9–10% Cr–3% Co martensitic steels during creep,” Metals 11, No. 60 (2021). A. Fedoseeva, I. Nikitin, E. Tkachev, R. Mishnev, N. Dudova, and R. Kaibyshev, “Effect of alloying on the nucleation and growth of Laves phase in the 9–10% Cr–3% Co martensitic steels during creep,” Metals 11, No. 60 (2021).
14.
go back to reference A. Zhilyaev, S. Sergeev, and T. Langdon, “Electron backscatter diffraction (EBSD) microstructure evolution in HPT copper annealed at a low temperature,” J. Mater. Res. Technol. 3, 338–343 (2014). CrossRef A. Zhilyaev, S. Sergeev, and T. Langdon, “Electron backscatter diffraction (EBSD) microstructure evolution in HPT copper annealed at a low temperature,” J. Mater. Res. Technol. 3, 338–343 (2014). CrossRef
15.
go back to reference A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel,” Mater. Sci. Eng., A 654, 1–12 (2016). CrossRef A. Fedoseeva, N. Dudova, and R. Kaibyshev, “Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel,” Mater. Sci. Eng., A 654, 1–12 (2016). CrossRef
16.
go back to reference Q. Li, “Modeling the microstructure-mechanical property relationship for a 12% Cr–2W–V–Mo–Ni power plant steel,” Mater. Sci. Eng., A. 361, 385–391 (2003). CrossRef Q. Li, “Modeling the microstructure-mechanical property relationship for a 12% Cr–2W–V–Mo–Ni power plant steel,” Mater. Sci. Eng., A. 361, 385–391 (2003). CrossRef
17.
go back to reference V. Dudko, A. Belyakov, and R. Kaibyshev, “Origin of threshold stresses in a P92-type steel,” Trans. Ind. Inst. Met. 69, 223–227 (2016). CrossRef V. Dudko, A. Belyakov, and R. Kaibyshev, “Origin of threshold stresses in a P92-type steel,” Trans. Ind. Inst. Met. 69, 223–227 (2016). CrossRef
Metadata
Title
Effect of the Quenching Temperature on the Creep Resistance of 9% Cr–1% W–1% Mo–V–Nb Martensite Steel
Authors
A. E. Fedoseeva
I. S. Nikitin
R. O. Kaibyshev
Publication date
01-01-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 1/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22010033