Skip to main content
Top
Published in: Physics of Metals and Metallography 5/2021

01-05-2021 | STRENGTH AND PLASTICITY

Effect of the Repetitive Corrugation and Straightening on the Microstructure and Mechanical Properties of a 3003 Aluminum Alloy

Authors: C. Reyes-Ruiz, C. G. Figueroa, G. González, A. Ortiz

Published in: Physics of Metals and Metallography | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel repetitive corrugation and straightening (RCS) die geometry was evaluated in terms of its mechanical properties and microstructural modifications. An annealed 3003 aluminum alloy sheet was processed up to 6 RCS passes at room temperature, showing a significant improvement in yield strength and hardness. Changes in surface profile values were obtained along different stages of the repetitive process; this showed a clear correlation between the higher strained region and the maxima of hardness values. Moreover, differences in roughness were associated with real contact area between material and corrugating die sections. Local strain distribution generated during the process was determined by kernel average misorientation (KAM) and was consistent with microhardness mapping results. Orientation image mapping showed that grains, with the normals parallel to 〈111〉, activate dislocation arrangement and grain fragmentation process prior to other main directions. In spite of mechanical properties improvement, initial texture components were maintained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. Sabirov, M. Y. Murashkin, and R. Z. Valiev, “Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development,” Mater. Sci. Eng., A 560, 1–24 (2013).CrossRef I. Sabirov, M. Y. Murashkin, and R. Z. Valiev, “Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development,” Mater. Sci. Eng., A 560, 1–24 (2013).CrossRef
2.
go back to reference T. G. Langdon, “The processing of ultrafine-grained materials through the application of severe plastic deformation,” J. Mater. Sci. 42, 3388–3397 (2007).CrossRef T. G. Langdon, “The processing of ultrafine-grained materials through the application of severe plastic deformation,” J. Mater. Sci. 42, 3388–3397 (2007).CrossRef
3.
go back to reference R. Z. Valiev, M. Y. Murashkin, A. V. Ganeev, and N. A. Enikeev, “Superstrength of nanostructured metals and alloys produced by severe plastic deformation,” Phys. Met. Metallogr. 113, 1193–1201 (2012).CrossRef R. Z. Valiev, M. Y. Murashkin, A. V. Ganeev, and N. A. Enikeev, “Superstrength of nanostructured metals and alloys produced by severe plastic deformation,” Phys. Met. Metallogr. 113, 1193–1201 (2012).CrossRef
4.
go back to reference V. M. Segal, “Severe plastic deformation: simple shear versus pure shear,” Mater. Sci. Eng., A 338, 331–344 (2002).CrossRef V. M. Segal, “Severe plastic deformation: simple shear versus pure shear,” Mater. Sci. Eng., A 338, 331–344 (2002).CrossRef
5.
go back to reference Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials,” Scr. Mater. 35, 143–146 (1996).CrossRef Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials,” Scr. Mater. 35, 143–146 (1996).CrossRef
6.
go back to reference R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci. 51, 881–981 (2006).CrossRef R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci. 51, 881–981 (2006).CrossRef
7.
go back to reference J. Zhang, N. Gao, and M. J. Starink, “Microstructure development and hardening during high pressure torsion of commercially pure aluminum: Strain reversal experiments and a dislocation based model,” Mater. Sci. Eng., A 528, 2581–2591 (2011).CrossRef J. Zhang, N. Gao, and M. J. Starink, “Microstructure development and hardening during high pressure torsion of commercially pure aluminum: Strain reversal experiments and a dislocation based model,” Mater. Sci. Eng., A 528, 2581–2591 (2011).CrossRef
8.
go back to reference G. Liu, J. Gu, S. Ni, Y. Liu, and M. Song, “Microstructural evolution of Cu–Al alloys subjected to multi-axial compression,” Mater. Charact. 103, 107–119 (2015).CrossRef G. Liu, J. Gu, S. Ni, Y. Liu, and M. Song, “Microstructural evolution of Cu–Al alloys subjected to multi-axial compression,” Mater. Charact. 103, 107–119 (2015).CrossRef
9.
go back to reference K. Hajizadeh, S. Ejtemaei, B. Eghbali, and K. J. Kurzydlowski, “Microstructure and mechanical properties of 1050 aluminum after the combined processes of constrained groove pressing and cold rolling,” Phys. Met. Metallogr. 121, 72–77 (2020).CrossRef K. Hajizadeh, S. Ejtemaei, B. Eghbali, and K. J. Kurzydlowski, “Microstructure and mechanical properties of 1050 aluminum after the combined processes of constrained groove pressing and cold rolling,” Phys. Met. Metallogr. 121, 72–77 (2020).CrossRef
10.
go back to reference A. A. Tohidi, M. Ketabchi, and A. Hasannia, “Nanograined Ti–Nb microalloy steel achieved by Accumulative Roll Bonding (ARB) process,” Mater. Sci. Eng., A 577, 43–47 (2013).CrossRef A. A. Tohidi, M. Ketabchi, and A. Hasannia, “Nanograined Ti–Nb microalloy steel achieved by Accumulative Roll Bonding (ARB) process,” Mater. Sci. Eng., A 577, 43–47 (2013).CrossRef
11.
go back to reference J. Huang, Y. T. Zhu, D. J. Alexander, X. Liao, T. C. Lowe, and R. J. Asaro, “Development of repetitive corrugation and straightening,” Mater. Sci. Eng., A 371, 35–39 (2004).CrossRef J. Huang, Y. T. Zhu, D. J. Alexander, X. Liao, T. C. Lowe, and R. J. Asaro, “Development of repetitive corrugation and straightening,” Mater. Sci. Eng., A 371, 35–39 (2004).CrossRef
12.
go back to reference J. Y. Huang, Y. T. Zhu, H. Jiang, and T. C. Lowe, “Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening,” Acta Mater. 49, 1497–1505 (2001).CrossRef J. Y. Huang, Y. T. Zhu, H. Jiang, and T. C. Lowe, “Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening,” Acta Mater. 49, 1497–1505 (2001).CrossRef
13.
go back to reference I. G. Brodova, E. V. Shorokhov, I. G. Shirinkina, I. N. Zhgilev, T. I. Yablonskikh, V. V. Astaf’ev, and O. V. Antonova, “Evolution of the structure formation during dynamic pressing of the AMts alloy,” Phys. Met. Metallogr. 105, 594–601 (2008).CrossRef I. G. Brodova, E. V. Shorokhov, I. G. Shirinkina, I. N. Zhgilev, T. I. Yablonskikh, V. V. Astaf’ev, and O. V. Antonova, “Evolution of the structure formation during dynamic pressing of the AMts alloy,” Phys. Met. Metallogr. 105, 594–601 (2008).CrossRef
14.
go back to reference R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, and I. Sabirov, “The limits of refinement by severe plastic deformation,” Adv. Eng. Mater. 8, 1046–1056 (2006).CrossRef R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, and I. Sabirov, “The limits of refinement by severe plastic deformation,” Adv. Eng. Mater. 8, 1046–1056 (2006).CrossRef
15.
go back to reference I. E. Volokitina and A. V. Volokitin, “Evolution of the microstructure and mechanical properties of copper during the pressing–drawing process,” Phys. Met. Metallogr. 119, 917–921 (2018).CrossRef I. E. Volokitina and A. V. Volokitin, “Evolution of the microstructure and mechanical properties of copper during the pressing–drawing process,” Phys. Met. Metallogr. 119, 917–921 (2018).CrossRef
16.
go back to reference G. H. Zahid, Y. Huang, and P. B. Prangnell, “Microstructure and texture evolution during annealing a cryogenic-SPD processed Al-alloy with a nanoscale lamellar HAGB grain structure,” Acta Mater. 57, 3509–3521 (2009).CrossRef G. H. Zahid, Y. Huang, and P. B. Prangnell, “Microstructure and texture evolution during annealing a cryogenic-SPD processed Al-alloy with a nanoscale lamellar HAGB grain structure,” Acta Mater. 57, 3509–3521 (2009).CrossRef
17.
go back to reference E. C. Moreno-Valle, I. Sabirov, M. T. Perez-Prado, M. Y. Murashkin, E. V. Bobruk, and R. Z. Valiev, “Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures,” Mater. Lett. 65, 2917–2919 (2011).CrossRef E. C. Moreno-Valle, I. Sabirov, M. T. Perez-Prado, M. Y. Murashkin, E. V. Bobruk, and R. Z. Valiev, “Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures,” Mater. Lett. 65, 2917–2919 (2011).CrossRef
18.
go back to reference D. B. Witkin and E. J. Lavernia, “Synthesis and mechanical behavior of nanostructured materials via cryomilling,” Prog. Mater. Sci. 51, 1–60 (2006).CrossRef D. B. Witkin and E. J. Lavernia, “Synthesis and mechanical behavior of nanostructured materials via cryomilling,” Prog. Mater. Sci. 51, 1–60 (2006).CrossRef
19.
go back to reference F. Khodabakhshi, M. Abbaszadeh, H. Eskandari, and S. R. Mohebpour, “Application of CGP-cross route process for microstructure refinement and mechanical properties improvement in steel sheets,” J. Manuf. Process. 15, 533–541 (2013).CrossRef F. Khodabakhshi, M. Abbaszadeh, H. Eskandari, and S. R. Mohebpour, “Application of CGP-cross route process for microstructure refinement and mechanical properties improvement in steel sheets,” J. Manuf. Process. 15, 533–541 (2013).CrossRef
20.
go back to reference H. Lianxi, L. Yuping, W. Erde, and Y. Yang, “Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsetting-extrusion,” Mater. Sci. Eng., A 422, 327–332 (2006).CrossRef H. Lianxi, L. Yuping, W. Erde, and Y. Yang, “Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsetting-extrusion,” Mater. Sci. Eng., A 422, 327–332 (2006).CrossRef
21.
go back to reference F. Khodabakhshi and A. P. Gerlich, “Accumulative fold-forging (AFF) as a novel severe plastic deformation process to fabricate a high strength ultra-fine grained layered aluminum alloy structure,” Mater. Charact. 136, 229–239 (2018).CrossRef F. Khodabakhshi and A. P. Gerlich, “Accumulative fold-forging (AFF) as a novel severe plastic deformation process to fabricate a high strength ultra-fine grained layered aluminum alloy structure,” Mater. Charact. 136, 229–239 (2018).CrossRef
22.
go back to reference A. Shokuhfar and O. Nejadseyfi, “A comparison of the effects of severe plastic deformation and heat treatment on the tensile properties and impact toughness of aluminum alloy 6061,” Mater. Sci. Eng., A 594, 140–148 (2014).CrossRef A. Shokuhfar and O. Nejadseyfi, “A comparison of the effects of severe plastic deformation and heat treatment on the tensile properties and impact toughness of aluminum alloy 6061,” Mater. Sci. Eng., A 594, 140–148 (2014).CrossRef
23.
go back to reference N. Thangapandian, S. B. Prabu, and K. A. Padmanabhan, “Effects of die profile on grain refinement in Al–Mg alloy processed by repetitive corrugation and straightening,” Mater. Sci. Eng., A 649, 229–238 (2016).CrossRef N. Thangapandian, S. B. Prabu, and K. A. Padmanabhan, “Effects of die profile on grain refinement in Al–Mg alloy processed by repetitive corrugation and straightening,” Mater. Sci. Eng., A 649, 229–238 (2016).CrossRef
24.
go back to reference N. Thangapandian, S. B. Prabu, and K. A. Padmanabhan, “On the role of experimental variables in the repetitive corrugation and straightening of an Al–Mg alloy,” Procedia Eng. 207, 1457–1462 (2017).CrossRef N. Thangapandian, S. B. Prabu, and K. A. Padmanabhan, “On the role of experimental variables in the repetitive corrugation and straightening of an Al–Mg alloy,” Procedia Eng. 207, 1457–1462 (2017).CrossRef
25.
go back to reference X. Wu and Y. Zhu, “Heterogeneous materials: a new class of materials with unprecedented mechanical properties,” Mater. Res. Lett. 5, 527–532 (2017).CrossRef X. Wu and Y. Zhu, “Heterogeneous materials: a new class of materials with unprecedented mechanical properties,” Mater. Res. Lett. 5, 527–532 (2017).CrossRef
26.
go back to reference A. Rosochowski, “Processing metals by severe plastic deformation,” Solid State Phenom. 101–102, 13–22 (2005).CrossRef A. Rosochowski, “Processing metals by severe plastic deformation,” Solid State Phenom. 101102, 13–22 (2005).CrossRef
27.
go back to reference F. Bachmann, R. Hielscher, and H. Schaeben, “Texture analysis with MTEX – free and open source software toolbox,” Solid State Phenom. 160, 63–68 (2010).CrossRef F. Bachmann, R. Hielscher, and H. Schaeben, “Texture analysis with MTEX – free and open source software toolbox,” Solid State Phenom. 160, 63–68 (2010).CrossRef
28.
go back to reference T. Roisnel and J. Rodríquez-Carvajal, “WinPLOTR: A windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum 378–381, 118–123 (2001).CrossRef T. Roisnel and J. Rodríquez-Carvajal, “WinPLOTR: A windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum 378381, 118–123 (2001).CrossRef
29.
go back to reference S. S. Satheesh Kumar and T. Raghu, “Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique,” Mater. Des. 57, 114–120 (2014).CrossRef S. S. Satheesh Kumar and T. Raghu, “Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique,” Mater. Des. 57, 114–120 (2014).CrossRef
30.
go back to reference Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).CrossRef Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).CrossRef
31.
go back to reference C. Figueroa, R. Schouwenaars, V. Jacobo, A. Ortiz, R. Petrov, and L. Kestens, “Tribological and microstructural characterization of ultrafine layers induced by wear in ductile alloys,” Tribol. Online. 11, 389–395 (2016).CrossRef C. Figueroa, R. Schouwenaars, V. Jacobo, A. Ortiz, R. Petrov, and L. Kestens, “Tribological and microstructural characterization of ultrafine layers induced by wear in ductile alloys,” Tribol. Online. 11, 389–395 (2016).CrossRef
32.
go back to reference J. Williams, Engineering Tribology (Cambridge University, Cambridge, 2005).CrossRef J. Williams, Engineering Tribology (Cambridge University, Cambridge, 2005).CrossRef
33.
go back to reference C. Reyes-Ruiz, I. A. Figueroa, C. Braham, J. M. Cabrera, I. Alfonso, and G. Gonzalez, “Texture and lattice distortion study of an Al-6061-T6 alloy produced by ECAP,” Mater. Trans. 56, 1781–1786 (2015).CrossRef C. Reyes-Ruiz, I. A. Figueroa, C. Braham, J. M. Cabrera, I. Alfonso, and G. Gonzalez, “Texture and lattice distortion study of an Al-6061-T6 alloy produced by ECAP,” Mater. Trans. 56, 1781–1786 (2015).CrossRef
34.
go back to reference W. Skrotzki, A. Eschke, B. Joni, T. Ungar, L. S. Toth, Y. Ivanisenko, and L. Kurmanaeva, “New experimental insight into the mechanisms of nanoplasticity,” Acta Mater. 61, 7271–7284 (2013).CrossRef W. Skrotzki, A. Eschke, B. Joni, T. Ungar, L. S. Toth, Y. Ivanisenko, and L. Kurmanaeva, “New experimental insight into the mechanisms of nanoplasticity,” Acta Mater. 61, 7271–7284 (2013).CrossRef
35.
go back to reference O. Renk, A. Hohenwarter, S. Wurster, and R. Pippan, “Direct evidence for grain boundary motion as the dominant restoration mechanism in the steady-state regime of extremely cold-rolled copper,” Acta Mater. 77, 401–410 (2014).CrossRef O. Renk, A. Hohenwarter, S. Wurster, and R. Pippan, “Direct evidence for grain boundary motion as the dominant restoration mechanism in the steady-state regime of extremely cold-rolled copper,” Acta Mater. 77, 401–410 (2014).CrossRef
36.
go back to reference J. Liu and J. G. Morris, “Recrystallization Textures of continuous cast AA 3015 alloy: Development of the P orientation {011} 〈566〉,” Metall. Mater. Trans. A 34, 2029–2032 (2003).CrossRef J. Liu and J. G. Morris, “Recrystallization Textures of continuous cast AA 3015 alloy: Development of the P orientation {011} 〈566〉,” Metall. Mater. Trans. A 34, 2029–2032 (2003).CrossRef
37.
go back to reference W. X. Wang, M. Ma, H. L. Li, J. X. Zhang, and W. C. Liu, “Effect of preheat treatment on the texture evolution during cold rolling of AA 3003 aluminum alloy,” J. Mater. Eng. Perform. 24, 4283–4289 (2015).CrossRef W. X. Wang, M. Ma, H. L. Li, J. X. Zhang, and W. C. Liu, “Effect of preheat treatment on the texture evolution during cold rolling of AA 3003 aluminum alloy,” J. Mater. Eng. Perform. 24, 4283–4289 (2015).CrossRef
38.
go back to reference W. X. Wang, J. X. Zhang, Z. J. Wang, and W. C. Liu, “A comparative study of the transformation kinetics of recrystallization texture of CC and DC 3003 aluminum alloys,” Mater. Charact. 141, 412–422 (2018).CrossRef W. X. Wang, J. X. Zhang, Z. J. Wang, and W. C. Liu, “A comparative study of the transformation kinetics of recrystallization texture of CC and DC 3003 aluminum alloys,” Mater. Charact. 141, 412–422 (2018).CrossRef
39.
go back to reference I. J. Beyerlein and L. S. Tóth, “Texture evolution in equal-channel angular extrusion,” Prog. Mater. Sci. 54, 427–510 (2009).CrossRef I. J. Beyerlein and L. S. Tóth, “Texture evolution in equal-channel angular extrusion,” Prog. Mater. Sci. 54, 427–510 (2009).CrossRef
40.
go back to reference L. S. Tóth, “Texture evolution in severe plastic deformation by equal channel angular extrusion,” Adv. Eng. Mater. 5, 308–316 (2003).CrossRef L. S. Tóth, “Texture evolution in severe plastic deformation by equal channel angular extrusion,” Adv. Eng. Mater. 5, 308–316 (2003).CrossRef
41.
go back to reference C. G. Figueroa, R. Schouwenaars, J. Cortés-Pérez, R. Petrov, and L. Kestens, “Ultrafine gradient microstructure induced by severe plastic deformation under sliding contact conditions in copper,” Mater. Charact. 138, 263–273 (2018).CrossRef C. G. Figueroa, R. Schouwenaars, J. Cortés-Pérez, R. Petrov, and L. Kestens, “Ultrafine gradient microstructure induced by severe plastic deformation under sliding contact conditions in copper,” Mater. Charact. 138, 263–273 (2018).CrossRef
42.
go back to reference J. Jenix Rino, S. Balasivanandha Prabu, and K. A. Padmanabhan, “On the influence of repetitive corrugation and straightening on the microstructure and mechanical properties of AA 8090 Al–Li alloy,” Arch. Civ. Mech. Eng. 18, 280–290 (2018).CrossRef J. Jenix Rino, S. Balasivanandha Prabu, and K. A. Padmanabhan, “On the influence of repetitive corrugation and straightening on the microstructure and mechanical properties of AA 8090 Al–Li alloy,” Arch. Civ. Mech. Eng. 18, 280–290 (2018).CrossRef
Metadata
Title
Effect of the Repetitive Corrugation and Straightening on the Microstructure and Mechanical Properties of a 3003 Aluminum Alloy
Authors
C. Reyes-Ruiz
C. G. Figueroa
G. González
A. Ortiz
Publication date
01-05-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 5/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21050112

Other articles of this Issue 5/2021

Physics of Metals and Metallography 5/2021 Go to the issue