Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 1/2022

01-01-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Effect of the Temperature of Mechanical Tests on the Properties of the Nanocrystalline Cu–14Al–3Ni Alloy Subjected to High Pressure Torsion

Authors: A. E. Svirid, V. G. Pushin, N. N. Kuranova, N. V. Nikolaeva, A. N. Uksusnikov

Published in: Physics of Metals and Metallography | Issue 1/2022

Login to get access
share
SHARE

Abstract

The tensile tests in combination with the electron microscopy and X-ray technique have provided data on the mechanical properties of the ultrafine-grained (UFG) shape-memory Cu–14 wt % Al–3 wt % Ni alloy at different temperatures and its fracture character. The UFG structure in the alloy has formed during severe plastic deformation performed by high pressure torsion. The study has shown two variants of the mechanical behavior of the UFG alloy depending on the temperature and strain rate during mechanical testing. The first case is the deformation of the alloy in the martensitic state at moderate test temperatures (300, 423, 473 K). This stage is characterized by a high hardening coefficient and moderate uniform relative elongation and reduction. The second case is deformation at higher test temperatures (573, 673 K). It is characterized mainly by large uniform localized plastic deformation and moderate hardening due to dynamic recrystallization.
Literature
1.
2.
go back to reference Kh. Varlimont and L. Dilei, Martensite Transformations in Alloys Based on Copper, Silver, and Gold (Nauka, Moscow, 1980) [in Russian]. Kh. Varlimont and L. Dilei, Martensite Transformations in Alloys Based on Copper, Silver, and Gold (Nauka, Moscow, 1980) [in Russian].
3.
go back to reference K. Ootsuka, K. Simidzu, Yu. Sudzuki, Yu. Sekiguti, Ts. Tadaki, T. Khomma, and S. Miyadzaki, Shape Memory Alloys (Metallurgiya, Moscow, 1990) [in Russian]. K. Ootsuka, K. Simidzu, Yu. Sudzuki, Yu. Sekiguti, Ts. Tadaki, T. Khomma, and S. Miyadzaki, Shape Memory Alloys (Metallurgiya, Moscow, 1990) [in Russian].
4.
go back to reference Engineering Aspects of Shape Memory Alloy, Ed. by T. W. Duering, K. L. Melton, D. Stockel, and C. M. Wayman, (Butterworth-Heineman, London, 1990). Engineering Aspects of Shape Memory Alloy, Ed. by T. W. Duering, K. L. Melton, D. Stockel, and C. M. Wayman, (Butterworth-Heineman, London, 1990).
5.
go back to reference V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992). V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992).
6.
go back to reference V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pre-transitional Phenomena and Martensitic Transformations (UrO RAN, Yekaterinburg, 1998) [in Russian]. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pre-transitional Phenomena and Martensitic Transformations (UrO RAN, Yekaterinburg, 1998) [in Russian].
7.
go back to reference E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, “Elastocaloric effect associated with the martensitic transition in shape-memory alloys,” Phys. Rev. Lett. 100, 125901 (2008). CrossRef E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, “Elastocaloric effect associated with the martensitic transition in shape-memory alloys,” Phys. Rev. Lett. 100, 125901 (2008). CrossRef
8.
go back to reference J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, “Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires,” Appl. Phys. Lett. 101, 073904 (2012). CrossRef J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, “Demonstration of high efficiency elastocaloric cooling with large δT using NiTi wires,” Appl. Phys. Lett. 101, 073904 (2012). CrossRef
9.
go back to reference L. Mañosa, S. Jarque-Farnos, E. Vives, and A. Planes, “Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys,” Appl. Phys. Lett. 103, 211904 (2013). CrossRef L. Mañosa, S. Jarque-Farnos, E. Vives, and A. Planes, “Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys,” Appl. Phys. Lett. 103, 211904 (2013). CrossRef
10.
go back to reference P. Sedlak, H. Seiner, M. Landa, V. Novák, P. Šittner, and L. I. Manosa, “Elastic Constants of bcc Austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy,” Acta Mater. 53, 3643–3661 (2005). CrossRef P. Sedlak, H. Seiner, M. Landa, V. Novák, P. Šittner, and L. I. Manosa, “Elastic Constants of bcc Austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy,” Acta Mater. 53, 3643–3661 (2005). CrossRef
11.
go back to reference R. Dasgupta, “A look into Cu–based shape memory alloys: Present Scenario and future prospects,” J. Mater. Res. 29, No. 16, 1681–1698 (2014). CrossRef R. Dasgupta, “A look into Cu–based shape memory alloys: Present Scenario and future prospects,” J. Mater. Res. 29, No. 16, 1681–1698 (2014). CrossRef
12.
go back to reference V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616–2640 (2019). CrossRef V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616–2640 (2019). CrossRef
13.
go back to reference A. V. Lukyanov, V. G. Pushin, N. N. Kuranova, A. E. Svirid, A. N. Uksusnikov, Yu. M. Ustyugov, and D. V. Gunderov, “Effect of the thermomechanical treatment on structural and phase transformations in Cu–14Al–3Ni shape memory alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 119, 374–382 (2018). CrossRef A. V. Lukyanov, V. G. Pushin, N. N. Kuranova, A. E. Svirid, A. N. Uksusnikov, Yu. M. Ustyugov, and D. V. Gunderov, “Effect of the thermomechanical treatment on structural and phase transformations in Cu–14Al–3Ni shape memory alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 119, 374–382 (2018). CrossRef
14.
go back to reference A. E. Svirid, A. V. Luk’yanov, V. G. Pushin, E. S. Belo-sludtseva, N. N. Kuranova, and A. V. Pushin, “Effect of the temperature of isothermal upsetting on the structure and the properties of the shape memory Cu–14 wt % Al–4 wt % Ni alloy,” Phys. Met. Metallogr. 120, 1159–1165 (2019). CrossRef A. E. Svirid, A. V. Luk’yanov, V. G. Pushin, E. S. Belo-sludtseva, N. N. Kuranova, and A. V. Pushin, “Effect of the temperature of isothermal upsetting on the structure and the properties of the shape memory Cu–14 wt % Al–4 wt % Ni alloy,” Phys. Met. Metallogr. 120, 1159–1165 (2019). CrossRef
15.
go back to reference A. E. Svirid, V. G. Pushin, N. N. Kuranova, E. S. Belo-sludtseva, A. V. Pushin, and A. V. Lukyanov, “The effect of plastification of Cu–14Al–4Ni alloy with the shape memory effect in high-temperature isothermal precipitation,” Tech. Phys. Lett. 46, 118–121 (2020). CrossRef A. E. Svirid, V. G. Pushin, N. N. Kuranova, E. S. Belo-sludtseva, A. V. Pushin, and A. V. Lukyanov, “The effect of plastification of Cu–14Al–4Ni alloy with the shape memory effect in high-temperature isothermal precipitation,” Tech. Phys. Lett. 46, 118–121 (2020). CrossRef
16.
go back to reference A. E. Svirid, V. G. Pushin, N. N. Kuranova, V. V. Makarov, A. V. Pushin, A. N. Uksusnikov, and A. V. Luk’yanov, “Application of isothermal upset for megaplastic deformation of Cu–Al–Ni β alloys,” Tech. Phys. 90, 1044–1055 (2020). CrossRef A. E. Svirid, V. G. Pushin, N. N. Kuranova, V. V. Makarov, A. V. Pushin, A. N. Uksusnikov, and A. V. Luk’yanov, “Application of isothermal upset for megaplastic deformation of Cu–Al–Ni β alloys,” Tech. Phys. 90, 1044–1055 (2020). CrossRef
17.
go back to reference A. E. Svirid, V. G. Pushin, N. N. Kuranova, V. V. Makarov, and A. N. Uksusnikov, “The effect of heat treatment on the structure and mechanical properties of nanocrystalline Cu–14Al–3Ni alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 122, No. 9, 883–890 (2021). CrossRef A. E. Svirid, V. G. Pushin, N. N. Kuranova, V. V. Makarov, and A. N. Uksusnikov, “The effect of heat treatment on the structure and mechanical properties of nanocrystalline Cu–14Al–3Ni alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 122, No. 9, 883–890 (2021). CrossRef
18.
go back to reference A. Pelosin and A. Riviere, “Structural and mechanical spectroscopy study of the \(\beta _{1}^{'}\) martensite decomposition in Cu–12% Al–3% Ni (wt %) alloy,” J. Alloys Compd. 268, 166–172 (1998). CrossRef A. Pelosin and A. Riviere, “Structural and mechanical spectroscopy study of the \(\beta _{1}^{'}\) martensite decomposition in Cu–12% Al–3% Ni (wt %) alloy,” J. Alloys Compd. 268, 166–172 (1998). CrossRef
19.
go back to reference F. Dagdelen, T. Gokhan, A. Aydogdu, Y. Aydogdu, and O. Adiguzel, “Effect of thermal treatments on transformation behavior in shape memory Cu–Al–Ni alloys,” Mater. Lett. 57, 1079–1085 (2003). CrossRef F. Dagdelen, T. Gokhan, A. Aydogdu, Y. Aydogdu, and O. Adiguzel, “Effect of thermal treatments on transformation behavior in shape memory Cu–Al–Ni alloys,” Mater. Lett. 57, 1079–1085 (2003). CrossRef
20.
go back to reference Z. Li, Z. Y. Pan, N. Tang, Y. B. Jiang, N. Liu, M. Fang, and F. Zheng, “Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy,” Mater. Sci. Eng., A 417, 225–229 (2006). CrossRef Z. Li, Z. Y. Pan, N. Tang, Y. B. Jiang, N. Liu, M. Fang, and F. Zheng, “Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy,” Mater. Sci. Eng., A 417, 225–229 (2006). CrossRef
21.
go back to reference N. Suresh and U. Ramamurty, “Aging response and its effect on the functional properties of Cu–Al–Ni shape memory alloys,” J. Alloys Compd. 449, 113–118 (2008). CrossRef N. Suresh and U. Ramamurty, “Aging response and its effect on the functional properties of Cu–Al–Ni shape memory alloys,” J. Alloys Compd. 449, 113–118 (2008). CrossRef
22.
go back to reference R. D. Dar, H. Yan, and Y. Chen, “Grain boundary engineering of Co–Ni–Al, Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase,” Scr. Mater. 115, 113–117 (2016). CrossRef R. D. Dar, H. Yan, and Y. Chen, “Grain boundary engineering of Co–Ni–Al, Cu–Zn–Al, and Cu–Al–Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase,” Scr. Mater. 115, 113–117 (2016). CrossRef
23.
go back to reference P. La Roca, L. Isola, Ph. Vermaut, and J. Malarria, “Relationship between grain size and thermal hysteresis of martensitic transformations in Cu-based shape memory alloys,” Scr. Mater. 135, 5–9 (2017). CrossRef P. La Roca, L. Isola, Ph. Vermaut, and J. Malarria, “Relationship between grain size and thermal hysteresis of martensitic transformations in Cu-based shape memory alloys,” Scr. Mater. 135, 5–9 (2017). CrossRef
24.
go back to reference X. Zhang, X. Zhao, F. Wang, L. Qingsuo, and Q. Wang, “Microstructure, mechanical properties and shape memory effect of Cu–Hf–Al–Ni alloys,” Mater. Sci. Technol. 34, No. 12, 1497–1501 (2018). CrossRef X. Zhang, X. Zhao, F. Wang, L. Qingsuo, and Q. Wang, “Microstructure, mechanical properties and shape memory effect of Cu–Hf–Al–Ni alloys,” Mater. Sci. Technol. 34, No. 12, 1497–1501 (2018). CrossRef
25.
go back to reference A. E. Svirid, V. G. Pushin, N. N. Kuranova, A. V. Luk’yanov, A. V. Pushin, A. N. Uksusnikov, and Y. M. Ustyugov, “The structure–phase transformations and mechanical properties of the shape memory effect alloys based on the system Cu–Al–Ni,” Mater. Today: Proc. 4, 4758–4762 (2017). A. E. Svirid, V. G. Pushin, N. N. Kuranova, A. V. Luk’yanov, A. V. Pushin, A. N. Uksusnikov, and Y. M. Ustyugov, “The structure–phase transformations and mechanical properties of the shape memory effect alloys based on the system Cu–Al–Ni,” Mater. Today: Proc. 4, 4758–4762 (2017).
26.
go back to reference A. E. Svirid, N. N. Kuranova, A. V. Luk’yanov, V. V. Makarov, N. V. Nikolaeva, V. G. Pushin, and A. N. Uksusnikov, “Influence of thermomechanical treatment on structural-phase transformations and mechanical properties of the Cu–Al–Ni shape-memory alloys,” Russ. Phys. J. 61, 1681–1686 (2018). CrossRef A. E. Svirid, N. N. Kuranova, A. V. Luk’yanov, V. V. Makarov, N. V. Nikolaeva, V. G. Pushin, and A. N. Uksusnikov, “Influence of thermomechanical treatment on structural-phase transformations and mechanical properties of the Cu–Al–Ni shape-memory alloys,” Russ. Phys. J. 61, 1681–1686 (2018). CrossRef
27.
go back to reference A. E. Svirid, A. V. Luk’yanov, V. V. Makarov, V. G. Pushin, and A. N. Uksusnikov, “Influence of doping with aluminum on the structure, phase transformations and properties of Cu–Al–Ni alloys with shape memory effect,” Chelyabinskii Fiz.-Mat. Zh. 4, 108–117 (2019). A. E. Svirid, A. V. Luk’yanov, V. V. Makarov, V. G. Pushin, and A. N. Uksusnikov, “Influence of doping with aluminum on the structure, phase transformations and properties of Cu–Al–Ni alloys with shape memory effect,” Chelyabinskii Fiz.-Mat. Zh. 4, 108–117 (2019).
Metadata
Title
Effect of the Temperature of Mechanical Tests on the Properties of the Nanocrystalline Cu–14Al–3Ni Alloy Subjected to High Pressure Torsion
Authors
A. E. Svirid
V. G. Pushin
N. N. Kuranova
N. V. Nikolaeva
A. N. Uksusnikov
Publication date
01-01-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 1/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22010136