Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2022

18-07-2022

Effect of the Thermal Conductivity of Mated Materials on the Wear Intensity of a Polymerpolymer Friction Pair

Authors: S. A. Bochkareva, V. O. Alexenko, B. A. Lyukshin, D. G. Buslovich, S. V. Panin

Published in: Mechanics of Composite Materials | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The development of new high-strength high-temperature thermoplastics opens up prospects for the creation of new types of polymer-polymer friction pairs. However, due to the low thermal conductivity of mated thermoplastic polymers, the frictional heat is localized in the tribocontact region. This fact exerts a significant effect on the physical and mechanical properties of the polymers and on their wear resistance. Taking into account the data of previous experimental studies, a model of the friction process and wear is developed, implemented, and verified as applied to the creation of a UHMWPE–PEEK polymer-polymer friction pair. In order to ensure the heat removal, it is proposed to use polymer composites in which, owing to the introduction of heat-conducting inclusions, the thermal conductivity increases. In addition, the degree of degradation of their strength properties caused by the frictional heating decreases, and, in turn, the wear rate decreases. The model developed was verified by the data of tribological tests of samples fabricated by the 3D-printing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. M. Cowiea, A. Briscoe, J. Fishera, and L. M. Jenningsa, “Wear and Friction of UHMWPE-on-PEEK OPTIMA,” J. Mech. Behav. Biomed. Mater, 89, 65-71 (2019).CrossRef R. M. Cowiea, A. Briscoe, J. Fishera, and L. M. Jenningsa, “Wear and Friction of UHMWPE-on-PEEK OPTIMA,” J. Mech. Behav. Biomed. Mater, 89, 65-71 (2019).CrossRef
2.
go back to reference S. Scholes and A. Unsworth, “Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials,” J. Mater. Sci. Mater. Med., 20, 163-170 (2009).CrossRef S. Scholes and A. Unsworth, “Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials,” J. Mater. Sci. Mater. Med., 20, 163-170 (2009).CrossRef
3.
go back to reference R. H. East, A. Briscoe, and A. Unsworth, “Wear of PEEK-OPTIMA and PEEKOPTIMA-Wear performance articulating against highly cross-linked polyethylene,” Proc. IMechE. Part H: J. Eng. Med., 229, No. 3, 187-193 (2015). R. H. East, A. Briscoe, and A. Unsworth, “Wear of PEEK-OPTIMA and PEEKOPTIMA-Wear performance articulating against highly cross-linked polyethylene,” Proc. IMechE. Part H: J. Eng. Med., 229, No. 3, 187-193 (2015).
4.
go back to reference B. Černe, J. Duhovnik, and J. Tavčar, “Semi-analytical flash temperature model for thermoplastic polymer spur gears with consideration of linear thermo-mechanical material characteristics,” J. Comput. Des. Eng, 6, No. 4, 617-628 (2019). B. Černe, J. Duhovnik, and J. Tavčar, “Semi-analytical flash temperature model for thermoplastic polymer spur gears with consideration of linear thermo-mechanical material characteristics,” J. Comput. Des. Eng, 6, No. 4, 617-628 (2019).
5.
go back to reference V. Ramesh, J. V. Kuilenburg, and W. W. Wits, “Experimental analysis and wear prediction model for unfilled polymerpolymer sliding contacts,” Tribol. Trans., 62, No. 1, 1-13 (2019).CrossRef V. Ramesh, J. V. Kuilenburg, and W. W. Wits, “Experimental analysis and wear prediction model for unfilled polymerpolymer sliding contacts,” Tribol. Trans., 62, No. 1, 1-13 (2019).CrossRef
6.
go back to reference T. J. Hoskins, K. D. Dearn, Y. K. Chen, and S. N. Kukurek, “The wear of PEEK in rolling-sliding contact — simulation of polymer gear applications,” Wear, 309, 35-42 (2014).CrossRef T. J. Hoskins, K. D. Dearn, Y. K. Chen, and S. N. Kukurek, “The wear of PEEK in rolling-sliding contact — simulation of polymer gear applications,” Wear, 309, 35-42 (2014).CrossRef
7.
go back to reference N. Burger et al., “Review of thermal conductivity in composites: Mechanisms, parameters and theory,” Prog. Polym. Sci., 61, 1-28 (2016).CrossRef N. Burger et al., “Review of thermal conductivity in composites: Mechanisms, parameters and theory,” Prog. Polym. Sci., 61, 1-28 (2016).CrossRef
8.
go back to reference X. Zheng et al., “Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles,” Composites: Part A, 121, 449-456 (2019).CrossRef X. Zheng et al., “Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles,” Composites: Part A, 121, 449-456 (2019).CrossRef
9.
go back to reference M. Li et al., “Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites,” Composites: Part B, 208, 108599 (2021).CrossRef M. Li et al., “Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites,” Composites: Part B, 208, 108599 (2021).CrossRef
10.
go back to reference B. Chen, J. Wang, and F. Yan, “Comparative investigation on the tribological behaviors of CF/PEEK composites under sea water lubrication,” Tribol. Int., 52, 170-177 (2012).CrossRef B. Chen, J. Wang, and F. Yan, “Comparative investigation on the tribological behaviors of CF/PEEK composites under sea water lubrication,” Tribol. Int., 52, 170-177 (2012).CrossRef
11.
go back to reference M. Lv, F. Zheng, Q. Wang, T. Wang, and Y. Liang, “Friction and wear behaviors of carbon and aramid fibers reinforced polyimide composites in simulated space environment,” Tribol. Int., 92, 246-254 (2015).CrossRef M. Lv, F. Zheng, Q. Wang, T. Wang, and Y. Liang, “Friction and wear behaviors of carbon and aramid fibers reinforced polyimide composites in simulated space environment,” Tribol. Int., 92, 246-254 (2015).CrossRef
12.
go back to reference Y. Yamamoto and M. Hashimoto, “Friction and wear of water lubricated PEEK and PPS sliding contacts: Part 2. Composites with carbon or glass fibre,” Wear., 257, Nos. 1-2, 181-189 (2004).CrossRef Y. Yamamoto and M. Hashimoto, “Friction and wear of water lubricated PEEK and PPS sliding contacts: Part 2. Composites with carbon or glass fibre,” Wear., 257, Nos. 1-2, 181-189 (2004).CrossRef
13.
go back to reference M. H. Müser, W. B Dapp., R. Bugnicourt, et al., “Meeting the contact-mechanics challenge,” Tribol. Lett., 65, 118 (2017).CrossRef M. H. Müser, W. B Dapp., R. Bugnicourt, et al., “Meeting the contact-mechanics challenge,” Tribol. Lett., 65, 118 (2017).CrossRef
14.
go back to reference B. N. J. Persson, “Theory of rubber friction and contact mechanics,” J. Chem. Phys., 115, No. 8, 3840-3861 (2001).CrossRef B. N. J. Persson, “Theory of rubber friction and contact mechanics,” J. Chem. Phys., 115, No. 8, 3840-3861 (2001).CrossRef
15.
go back to reference C. Putignano, L. Afferrante, G. Carbone, and G. Demelio, “A new efficient numerical method for contact mechanics of rough surfaces,” Int. J. Solids Struct., 49, No. 2, 338-343 (2012).CrossRef C. Putignano, L. Afferrante, G. Carbone, and G. Demelio, “A new efficient numerical method for contact mechanics of rough surfaces,” Int. J. Solids Struct., 49, No. 2, 338-343 (2012).CrossRef
16.
go back to reference A. Akchurin, R. Bosman, and P. M. Lugt, “A stress-criterion based model for the prediction of the size of wear particles in boundary lubricated contаcts,” Tribol. Lett., 64, No. 35, 35 (2016).CrossRef A. Akchurin, R. Bosman, and P. M. Lugt, “A stress-criterion based model for the prediction of the size of wear particles in boundary lubricated contаcts,” Tribol. Lett., 64, No. 35, 35 (2016).CrossRef
17.
go back to reference O. A. Belyak and T. V. Suvorova, “Predicting the mechanical properties of antifriction composite materials,” Mech. Compos. Mater., 57, 647-656 (2021).CrossRef O. A. Belyak and T. V. Suvorova, “Predicting the mechanical properties of antifriction composite materials,” Mech. Compos. Mater., 57, 647-656 (2021).CrossRef
18.
go back to reference M. I. Chebakov and S. A. Danilchenko, “Wear simulation of a spherical hinge joint with a thin composite coating,” Mech. Compos. Mater., 57, No. 5, 667-674 (2021).CrossRef M. I. Chebakov and S. A. Danilchenko, “Wear simulation of a spherical hinge joint with a thin composite coating,” Mech. Compos. Mater., 57, No. 5, 667-674 (2021).CrossRef
19.
go back to reference R. Buczkowski and M. Kleiber, “Statistical models of rough surfaces for finite element 3D-contact analysis,” Arch. Comput. Methods Eng., 16, 399-424 (2009).CrossRef R. Buczkowski and M. Kleiber, “Statistical models of rough surfaces for finite element 3D-contact analysis,” Arch. Comput. Methods Eng., 16, 399-424 (2009).CrossRef
20.
go back to reference J. Ding, I. R. McColl., S. B. Leen, and P. H. Shipway, “A finite element based approach to simulating the effects of debris on fretting wear,” Wear., 481, 481-491 (2007).CrossRef J. Ding, I. R. McColl., S. B. Leen, and P. H. Shipway, “A finite element based approach to simulating the effects of debris on fretting wear,” Wear., 481, 481-491 (2007).CrossRef
21.
go back to reference V. L. Popov and S. G. Psakhie, “Numerical simulation methods in tribology,” Tribol. Int., 40, 916-923 (2007).CrossRef V. L. Popov and S. G. Psakhie, “Numerical simulation methods in tribology,” Tribol. Int., 40, 916-923 (2007).CrossRef
22.
go back to reference C. Yang and B. N. J. Persson, “Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact,” Phys. Rev. Lett., 100,. 024303 (2008).CrossRef C. Yang and B. N. J. Persson, “Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact,” Phys. Rev. Lett., 100,. 024303 (2008).CrossRef
23.
go back to reference S. A. Bochkareva, N. Y. Grishaeva, D. G. Buslovich, L. A. Kornienko, B. A. Lyukshin, S. V. Panin, I. L. Panov, and Y. V. Dontsov, “Development of a wear-resistant extrudable composite material based on an ultrahigh-molecular polyethylene with predetermined properties,” Mech. Compos. Mater., 56, No. 1, 15-26 (2020).CrossRef S. A. Bochkareva, N. Y. Grishaeva, D. G. Buslovich, L. A. Kornienko, B. A. Lyukshin, S. V. Panin, I. L. Panov, and Y. V. Dontsov, “Development of a wear-resistant extrudable composite material based on an ultrahigh-molecular polyethylene with predetermined properties,” Mech. Compos. Mater., 56, No. 1, 15-26 (2020).CrossRef
24.
go back to reference S. A. Bochkareva, S. V. Panin, B. A. Lyukshin, N. Yu. Grishaeva, N. Y. Matolygina, and V. O. Aleksenko, “Simulation of frictional wear with account of temperature for polymer composites,” Phys. Mesomech., 23, No. 2, 147-159 (2020).CrossRef S. A. Bochkareva, S. V. Panin, B. A. Lyukshin, N. Yu. Grishaeva, N. Y. Matolygina, and V. O. Aleksenko, “Simulation of frictional wear with account of temperature for polymer composites,” Phys. Mesomech., 23, No. 2, 147-159 (2020).CrossRef
25.
go back to reference N. Yu. Grishaeva, P. A. Lyukshin, B. A. Lyukshin, S. V. Panin, S. A. Bochkareva, Yu. A. Reutov, N. Yu. Matolygina, “Modification of thermophysical characteristics of polymers by introducing microfillers,” Mekh. Kompoz. Mater. Konstr., 22, No. 3, 342-361 (2016). N. Yu. Grishaeva, P. A. Lyukshin, B. A. Lyukshin, S. V. Panin, S. A. Bochkareva, Yu. A. Reutov, N. Yu. Matolygina, “Modification of thermophysical characteristics of polymers by introducing microfillers,” Mekh. Kompoz. Mater. Konstr., 22, No. 3, 342-361 (2016).
26.
go back to reference I. N. Andreeva, E. V. Veselovskaya, E. I. Nalivaiko et al. Ultrahigh Molecular Weight Polyethylene of High Density [in Russian], L., Khimiya (1982). I. N. Andreeva, E. V. Veselovskaya, E. I. Nalivaiko et al. Ultrahigh Molecular Weight Polyethylene of High Density [in Russian], L., Khimiya (1982).
27.
go back to reference S. A. Bochkareva, N. Yu. Grishaeva, B. A. Lyukshin, P. A. Lyukshin, N. Yu. Matolygina, S. V. Panin, Yu. A. Reutov, “A unified approach to determining the effective physicomechanical characteristics of filled polymer composites based on variational principles,” Mech. compos. mater., 54, No. 6, 775-788 (2019).CrossRef S. A. Bochkareva, N. Yu. Grishaeva, B. A. Lyukshin, P. A. Lyukshin, N. Yu. Matolygina, S. V. Panin, Yu. A. Reutov, “A unified approach to determining the effective physicomechanical characteristics of filled polymer composites based on variational principles,” Mech. compos. mater., 54, No. 6, 775-788 (2019).CrossRef
28.
go back to reference R. Peterson Coefficients of Stress Concentration. Graphs and Formulas for Calculating Structural Elements for Strength [Russian translation], M., Mir (1977). R. Peterson Coefficients of Stress Concentration. Graphs and Formulas for Calculating Structural Elements for Strength [Russian translation], M., Mir (1977).
Metadata
Title
Effect of the Thermal Conductivity of Mated Materials on the Wear Intensity of a Polymerpolymer Friction Pair
Authors
S. A. Bochkareva
V. O. Alexenko
B. A. Lyukshin
D. G. Buslovich
S. V. Panin
Publication date
18-07-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10032-3

Other articles of this Issue 3/2022

Mechanics of Composite Materials 3/2022 Go to the issue

Premium Partners