Skip to main content
Top

2017 | OriginalPaper | Chapter

14. Effect of the Transport Properties on the Design of a Plant and on the Economy of the Sweetening Process of Natural Gas Using Membranes

Authors : Jorge F. Palomeque Santiago, Diego Javier Guzmán Lucero, Javier Guzmán Pantoja

Published in: Membranes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The development of new membranes for gaseous separations has been focused on the improvement of their gas transport properties in order to obtain highly pure products, higher gas flows to be treated, and materials that are more resistant to the operation conditions. In the present study, the comparison between two commercially available membranes for the sweetening process of natural gas and one membrane synthesized at the Instituto Mexicano del Petróleo (IMP) is carried out. The size of plants, their investment, operation, and gas processing costs are analyzed. It was found that the IMP membrane required less permeation area, lower investment, maintenance, and operation costs and promoted methane loss savings in the permeation stream and a lower gas processing cost.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nichols, J. L. V., Friedman, B. M., Nold, A. L., McCutcheon, S., & Goethe, A. (2009). Processing technologies for CO 2 rich gas. In 88th annual GPA convention, San Antonio, TX, March 9th–11th 2009, pp. 1–25. Nichols, J. L. V., Friedman, B. M., Nold, A. L., McCutcheon, S., & Goethe, A. (2009). Processing technologies for CO 2 rich gas. In 88th annual GPA convention, San Antonio, TX, March 9th–11th 2009, pp. 1–25.
2.
go back to reference Sridhar, S., Sharifah Bee & Suresh K. Bhargava (2014). Membrane-based Gas Separation: Principle, Applications and Future Potential, Chemical Industry Digest, 179–204. Sridhar, S., Sharifah Bee & Suresh K. Bhargava (2014). Membrane-based Gas Separation: Principle, Applications and Future Potential, Chemical Industry Digest, 179–204.
3.
go back to reference Chowdhury, M. H. M., Feng, X., Douglas, P., & Coiset, E. (2005). A new numerical approach for a detailed multicomponent gas separation membrane module ans AspenPlus simulation. Chemical Engineering and Technology, 28, 773–782.CrossRef Chowdhury, M. H. M., Feng, X., Douglas, P., & Coiset, E. (2005). A new numerical approach for a detailed multicomponent gas separation membrane module ans AspenPlus simulation. Chemical Engineering and Technology, 28, 773–782.CrossRef
4.
go back to reference Scholes, C. A., Stevens, G. W., & Kentish, S. E. (2012). Permeation through CO selective glassy polymeric membranes in the presence of hydrogen sulfide. AIChE Journal, 58, 967–973.CrossRef Scholes, C. A., Stevens, G. W., & Kentish, S. E. (2012). Permeation through CO selective glassy polymeric membranes in the presence of hydrogen sulfide. AIChE Journal, 58, 967–973.CrossRef
5.
go back to reference Pan, C. Y. (1983). Gas separation by permeators with high-flux asymmetric membranes. AIChE Journal, 29, 545–553.CrossRef Pan, C. Y. (1983). Gas separation by permeators with high-flux asymmetric membranes. AIChE Journal, 29, 545–553.CrossRef
6.
go back to reference Hao, J., Rice, P. A., & Stern, S. A. (2002). Upgrading low-quality natural gas with H S- and CO-selective polymer membranes Part I. Process design and economics of membrane stages without recycle streams. Journal of Membrane Science, 209, 177–206.CrossRef Hao, J., Rice, P. A., & Stern, S. A. (2002). Upgrading low-quality natural gas with H S- and CO-selective polymer membranes Part I. Process design and economics of membrane stages without recycle streams. Journal of Membrane Science, 209, 177–206.CrossRef
7.
go back to reference Hao, J., Rice, P. A., & Stern, S. A. (2008). Upgrading low-quality natural gas with H S- and CO-selective polymer membranes Part II. Process design, economics, and sensitivity study of membrane stages with recycle streams. Journal of Membrane Science, 320, 108–122.CrossRef Hao, J., Rice, P. A., & Stern, S. A. (2008). Upgrading low-quality natural gas with H S- and CO-selective polymer membranes Part II. Process design, economics, and sensitivity study of membrane stages with recycle streams. Journal of Membrane Science, 320, 108–122.CrossRef
8.
go back to reference Kohl, A. L., Nielsen, R. B. (1997). Gas purification. In Membrane permeation processes (5th ed.) (Chapter 15). Houston, TX: Gulf. Kohl, A. L., Nielsen, R. B. (1997). Gas purification. In Membrane permeation processes (5th ed.) (Chapter 15). Houston, TX: Gulf.
Metadata
Title
Effect of the Transport Properties on the Design of a Plant and on the Economy of the Sweetening Process of Natural Gas Using Membranes
Authors
Jorge F. Palomeque Santiago
Diego Javier Guzmán Lucero
Javier Guzmán Pantoja
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-45315-6_14

Premium Partners