Skip to main content
Top
Published in: Physics of Metals and Metallography 6/2021

01-06-2021 | STRENGTH AND PLASTICITY

Effect of the Zr and Er Content on the Structure and Properties of the Al–5Si–1.3Cu–0.5Mg Alloy

Authors: R. Yu. Barkov, A. S. Prosviryakov, M. G. Khomutov, A. V. Pozdniakov

Published in: Physics of Metals and Metallography | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of zirconium and erbium additives on the structure and mechanical properties of the cast alloy Al–5Si–1.3Cu–0.5Mg after the quenching and aging of an ingot and of a deformed sheet has been studied. An increase in the zirconium and erbium content from 0.15 to 0.2 wt % each leads to a substantial modification effect comparable to that via modification with the master alloy AlTi5B1. The grain size decreases from 200 to 80 µm in this case, while it reaches 750 µm in the alloy free of additives. The studied alloys are of a much higher ultimate compression yield stress at both room temperature (290–295 MPa) and 200°C (230–235 MPa) due to the smaller grain size and higher number of phases of crystallization origin. In this case, the formation of the erbium-containing phase, which is insoluble in the process of homogenization before quenching, slightly decreases the copper content in the solid solution. An increase in the zirconium and erbium content elevates the recrystallization-onset temperature and, at the same time, has no significant effect on the properties of deformed alloys after their quenching and aging: the yield strength is 271–285 MPa, the ultimate strength is 337–378 MPa, and the relative elongation is 6.7–17.5%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Zariff, C. Chaudhury, and A. Suryanarayana, “TEM study of decomposition behavior of a melt-quenched A1–Zr alloy,” Metallography 17, 231–250 (1984).CrossRef A. Zariff, C. Chaudhury, and A. Suryanarayana, “TEM study of decomposition behavior of a melt-quenched A1–Zr alloy,” Metallography 17, 231–250 (1984).CrossRef
2.
go back to reference E. Nes, “Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al–Zr alloys,” Acta Metall. 20, 499–506 (1972).CrossRef E. Nes, “Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al–Zr alloys,” Acta Metall. 20, 499–506 (1972).CrossRef
3.
go back to reference Ü. Xin-yu, G. Er-jun, P. Rometsch, and W. Li-juan, “Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminum alloy,” Trans. Nonferrous Met. Soc. China 22, 2645–2651 (2012).CrossRef Ü. Xin-yu, G. Er-jun, P. Rometsch, and W. Li-juan, “Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminum alloy,” Trans. Nonferrous Met. Soc. China 22, 2645–2651 (2012).CrossRef
4.
go back to reference K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C,” Acta Mater. 56, 1182–1195 (2008).CrossRef K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C,” Acta Mater. 56, 1182–1195 (2008).CrossRef
5.
go back to reference K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C,” Acta Mater. 56, 114–127 (2008).CrossRef K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C,” Acta Mater. 56, 114–127 (2008).CrossRef
6.
go back to reference A. V. Mikhaylovskaya, V. K. Portnoy, A. G. Mochugovskiy, M. Yu. Zadorozhnyy, N. Yu. Tabachkova, and I. Golovin, “Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al–3% Mg–TM alloys (TM = Mn, Cr, Zr),” Mater. Des. 109, 197–208 (2016).CrossRef A. V. Mikhaylovskaya, V. K. Portnoy, A. G. Mochugovskiy, M. Yu. Zadorozhnyy, N. Yu. Tabachkova, and I. Golovin, “Effect of homogenisation treatment on precipitation, recrystallisation and properties of Al–3% Mg–TM alloys (TM = Mn, Cr, Zr),” Mater. Des. 109, 197–208 (2016).CrossRef
7.
go back to reference A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Yu. Tabachkova, W. Mufalo, and V. K. Portnoy, “Precipitation behavior of L12 Al3Zr phase in Al–Mg–Zr alloy,” Mater. Charact. 139, 30–37 (2018).CrossRef A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Yu. Tabachkova, W. Mufalo, and V. K. Portnoy, “Precipitation behavior of L12 Al3Zr phase in Al–Mg–Zr alloy,” Mater. Charact. 139, 30–37 (2018).CrossRef
8.
go back to reference Y. Ma and R. S. Mishra, “Development of ultrafine-grained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed Al–Mg–Zr,” Scr. Mater. 53, 75–80 (2005).CrossRef Y. Ma and R. S. Mishra, “Development of ultrafine-grained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed Al–Mg–Zr,” Scr. Mater. 53, 75–80 (2005).CrossRef
9.
go back to reference C. B. Fuller and D. N. Seidman, “Temporal evolution of the nanostructure of Al3(Sc, Zr) alloys: Part II-coarsening of Al3(Sc1 – xZrx) precipitates,” Acta Mater. 53, 5415–5428 (2005).CrossRef C. B. Fuller and D. N. Seidman, “Temporal evolution of the nanostructure of Al3(Sc, Zr) alloys: Part II-coarsening of Al3(Sc1 – xZrx) precipitates,” Acta Mater. 53, 5415–5428 (2005).CrossRef
10.
go back to reference V. S. Zolotorevskiy, R. I. Dobrozhinskaya, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of the structure and mechanical properties of sheets of the Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy due to deformation accumulated upon rolling,” Phys. Met. Metallogr. 117, No. 11, 1163–1169 (2016).CrossRef V. S. Zolotorevskiy, R. I. Dobrozhinskaya, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Evolution of the structure and mechanical properties of sheets of the Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy due to deformation accumulated upon rolling,” Phys. Met. Metallogr. 117, No. 11, 1163–1169 (2016).CrossRef
11.
go back to reference V. S. Zolotorevskiy, R. I. Dobrozhinskaya, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Strength and substructure of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets,” Phys. Met. Metallogr. 118, No. 4, 429–436 (2017).CrossRef V. S. Zolotorevskiy, R. I. Dobrozhinskaya, V. V. Cheverikin, E. A. Khamnagdaeva, A. V. Pozdniakov, V. S. Levchenko, and E. S. Besogonova, “Strength and substructure of Al–4.7Mg–0.32Mn–0.21Sc–0.09Zr alloy sheets,” Phys. Met. Metallogr. 118, No. 4, 429–436 (2017).CrossRef
12.
go back to reference Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd. 610, 27–34 (2014).CrossRef Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd. 610, 27–34 (2014).CrossRef
13.
go back to reference S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).CrossRef S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater. 65, 592–595 (2011).CrossRef
14.
go back to reference S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. Alloys Compd. 574, 92–97 (2013).CrossRef S. P. Wen, K. Y. Gao, H. Huang, W. Wang, and Z. R. Nie, “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. Alloys Compd. 574, 92–97 (2013).CrossRef
15.
go back to reference A. V. Pozdniakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef A. V. Pozdniakov, R. Yu. Barkov, A. S. Prosviryakov, A. Yu. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef
16.
go back to reference A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of Low Additions of Y, Sm, Gd, Hf and Er on the Structure and Hardness of Alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, Nos. 9–10, 537–542 (2017).CrossRef A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of Low Additions of Y, Sm, Gd, Hf and Er on the Structure and Hardness of Alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, Nos. 9–10, 537–542 (2017).CrossRef
17.
go back to reference A. V. Pozdniakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new Al–Y–Er–Zr–Sc alloy, Metallurg, No. 1, 65–70 (2019). A. V. Pozdniakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new Al–Y–Er–Zr–Sc alloy, Metallurg, No. 1, 65–70 (2019).
18.
go back to reference M. Song, K. Du, Z. Y. Huang, and H. Huang, Z. R. Nie, and H. Q. Ye, “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater. 81, 409–419 (2014).CrossRef M. Song, K. Du, Z. Y. Huang, and H. Huang, Z. R. Nie, and H. Q. Ye, “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater. 81, 409–419 (2014).CrossRef
19.
go back to reference H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).CrossRef H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).CrossRef
20.
go back to reference S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).CrossRef S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).CrossRef
21.
go back to reference D. Yang, Lixiaoyan, Hedingyong, and Huanghui, “Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints,” Mater. Sci. Eng., A 561, 226–231 (2013).CrossRef D. Yang, Lixiaoyan, Hedingyong, and Huanghui, “Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints,” Mater. Sci. Eng., A 561, 226–231 (2013).CrossRef
22.
go back to reference A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakovtseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).CrossRef A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakovtseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).CrossRef
23.
go back to reference A. G. Mochugovskiy, A. V. Mikhaylovskaya, N. Yu. Tabachkova, and V. K. Portnoy, “The mechanism of L12 phase precipitation, microstructure and tensile properties of Al–Mg–Er–Zr alloy,” Mater. Sci. Eng., A 744, 195–205 (2019).CrossRef A. G. Mochugovskiy, A. V. Mikhaylovskaya, N. Yu. Tabachkova, and V. K. Portnoy, “The mechanism of L12 phase precipitation, microstructure and tensile properties of Al–Mg–Er–Zr alloy,” Mater. Sci. Eng., A 744, 195–205 (2019).CrossRef
24.
go back to reference A. V. Pozdniakov, R. Yu. Barkov, Zh. Sarsenbaev, S.M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, No. 6, 614–619 (2019).CrossRef A. V. Pozdniakov, R. Yu. Barkov, Zh. Sarsenbaev, S.M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, No. 6, 614–619 (2019).CrossRef
25.
go back to reference S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, No. 5, 476–482 (2020).CrossRef S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, No. 5, 476–482 (2020).CrossRef
26.
go back to reference S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).CrossRef S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, No. 4, 453–459 (2020).CrossRef
27.
go back to reference S. M. Amer, O. A. Yakovtseva, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. I. Bazlov, R. Yu. Barkov, A. V. Pozdniakov, “Phase composition and mechanical properties of a novel precipitation strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, 5345 (2020).CrossRef S. M. Amer, O. A. Yakovtseva, I. S. Loginova, S. V. Medvedeva, A. S. Prosviryakov, A. I. Bazlov, R. Yu. Barkov, A. V. Pozdniakov, “Phase composition and mechanical properties of a novel precipitation strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, 5345 (2020).CrossRef
28.
go back to reference X. Hu, F. Jiang, F. Ai, and H. Yan, “Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy,” J. Alloys Compd. 538, 21–27 (2012).CrossRef X. Hu, F. Jiang, F. Ai, and H. Yan, “Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy,” J. Alloys Compd. 538, 21–27 (2012).CrossRef
29.
go back to reference Z. M. Shi, Q. Wang, G. Zhao, and R. Y. Zhang, “Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys,” Mater. Sci. Eng., A 626, 102–107 (2015).CrossRef Z. M. Shi, Q. Wang, G. Zhao, and R. Y. Zhang, “Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys,” Mater. Sci. Eng., A 626, 102–107 (2015).CrossRef
30.
go back to reference M. Colombo, E. Gariboldi, and A. Morri, “Er addition to Al–Si–Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties,” J. Alloys Compd. 708, 1234–1244 (2017).CrossRef M. Colombo, E. Gariboldi, and A. Morri, “Er addition to Al–Si–Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties,” J. Alloys Compd. 708, 1234–1244 (2017).CrossRef
31.
go back to reference M. Colombo, E. Gariboldi, and A. Morri, “Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al–7Si–0.4Mg alloy modified with 0.25% Er,” Mater. Sci. Eng., A 713, 151–160 (2018).CrossRef M. Colombo, E. Gariboldi, and A. Morri, “Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al–7Si–0.4Mg alloy modified with 0.25% Er,” Mater. Sci. Eng., A 713, 151–160 (2018).CrossRef
32.
go back to reference R. Yu. Barkov, A. G. Mochugovskiy, M. G. Khomutov, and A. V. Pozdnyakov, “Influence of small additions of Zr and Er on the phase composition and mechanical properties of the Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122, No. 2, 173–178 (2021). R. Yu. Barkov, A. G. Mochugovskiy, M. G. Khomutov, and A. V. Pozdnyakov, “Influence of small additions of Zr and Er on the phase composition and mechanical properties of the Al–5Si–1.3Cu–0.5Mg alloy,” Phys. Met. Metallogr. 122, No. 2, 173–178 (2021).
33.
go back to reference I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian]. I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].
34.
go back to reference D. G. Eskin, Suyitno, and L, Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminium alloys,” Prog. Mater. Sci. 49, 629–711 (2004).CrossRef D. G. Eskin, Suyitno, and L, Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminium alloys,” Prog. Mater. Sci. 49, 629–711 (2004).CrossRef
35.
go back to reference V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, No. 4, 193–198 (2014).CrossRef V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, No. 4, 193–198 (2014).CrossRef
36.
go back to reference V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg Matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, No. 11, 1052–1060 (2012).CrossRef V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg Matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, No. 11, 1052–1060 (2012).CrossRef
Metadata
Title
Effect of the Zr and Er Content on the Structure and Properties of the Al–5Si–1.3Cu–0.5Mg Alloy
Authors
R. Yu. Barkov
A. S. Prosviryakov
M. G. Khomutov
A. V. Pozdniakov
Publication date
01-06-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 6/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21060028

Other articles of this Issue 6/2021

Physics of Metals and Metallography 6/2021 Go to the issue