Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

18-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Effect of TiH2 Oxidation Treatment on Foamed Aluminum Alloys Produced by Selective Laser Melting

Authors: Jintao An, Changjun Chen, Min Zhang

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

Closed-cell foamed aluminum alloys were manufactured using selective laser melting (SLM), wherein TiH2 was selected as the foaming agent. The effects of oxidation treatment and content changes of TiH2 on the porosity, pore size distribution and microstructure of the foamed aluminum alloys were studied. The results showed that with increasing TiH2 content, the porosity of the foamed aluminum alloy first increased and then decreased, and the number of pores increased, forming a greater number of micron-sized pores. Moreover, with increasing TiH2 content, the pore size range became more concentrated, and the shape of the pores became more regular. The microhardness value of the manufactured foamed aluminum alloy was between 100 and 130 HV, and the TiH2 content did not have any obvious effects on the hardness value. The results of the compression experiments revealed that the materials manufactured by SLM had energy absorption characteristics and exhibited brittle fracture.
Literature
1.
go back to reference T. Geramipour and H. Oveisi, “Effects of foaming parameters on microstructure and compressive properties of aluminum foams produced by powder metallurgy method,” Trans. Nonferrous Met. Soc. China 27 (7), 1569–1579 (2017). CrossRef T. Geramipour and H. Oveisi, “Effects of foaming parameters on microstructure and compressive properties of aluminum foams produced by powder metallurgy method,” Trans. Nonferrous Met. Soc. China 27 (7), 1569–1579 (2017). CrossRef
2.
go back to reference T. Hipke, J. Hohlfeld, and S. Rybandt, “Functionally aluminum foam composites for building industry,” Proc. Mater. Sci. 4, 133–138 (2014). CrossRef T. Hipke, J. Hohlfeld, and S. Rybandt, “Functionally aluminum foam composites for building industry,” Proc. Mater. Sci. 4, 133–138 (2014). CrossRef
3.
go back to reference R. Soltani, Z. Sarajan, and M. Soltani, “Foaming of pure aluminum by TiH 2,” Mater. Res. Innovations 18 (6), 401–406 (2013). CrossRef R. Soltani, Z. Sarajan, and M. Soltani, “Foaming of pure aluminum by TiH 2,” Mater. Res. Innovations 18 (6), 401–406 (2013). CrossRef
4.
go back to reference A. K. Shukla and J. Dutta Majumdar, “Studies on wear behavior of aluminum foam developed by spray forming route,” Mater. Today 19, 532–535 (2019). A. K. Shukla and J. Dutta Majumdar, “Studies on wear behavior of aluminum foam developed by spray forming route,” Mater. Today 19, 532–535 (2019).
5.
go back to reference X. Xia, Z. Zhang, W. Zhao, C. Li, J. Ding, C. Liu, and Y. Liu, “Acoustic properties of closed-cell aluminum foams with different macrostructures,” J. Mater. Sci. Technol. 33 (11), 1227–1234 (2017). CrossRef X. Xia, Z. Zhang, W. Zhao, C. Li, J. Ding, C. Liu, and Y. Liu, “Acoustic properties of closed-cell aluminum foams with different macrostructures,” J. Mater. Sci. Technol. 33 (11), 1227–1234 (2017). CrossRef
6.
go back to reference M. Altenaiji, Z. W. Guan, W. J. Cantwell, Y. Zhao, and G. K. Schleyer, “Characterization of aluminum matrix syntactic foams under drop weight impact,” Mater. Des. 59, 296–302 (2014). CrossRef M. Altenaiji, Z. W. Guan, W. J. Cantwell, Y. Zhao, and G. K. Schleyer, “Characterization of aluminum matrix syntactic foams under drop weight impact,” Mater. Des. 59, 296–302 (2014). CrossRef
7.
go back to reference X. Xia, H. Feng, X. Zhang, and W. Zhao, “The compressive properties of closed-cell aluminum foams with different Mn additions,” Mater. Des. 51, 797–802 (2013). CrossRef X. Xia, H. Feng, X. Zhang, and W. Zhao, “The compressive properties of closed-cell aluminum foams with different Mn additions,” Mater. Des. 51, 797–802 (2013). CrossRef
8.
go back to reference B. Matijasevic and J. Banhart, “Improvement of aluminum foam technology by tailoring of blowing agent,” Scr. Mater. 54 (4), 503–508 (2006). CrossRef B. Matijasevic and J. Banhart, “Improvement of aluminum foam technology by tailoring of blowing agent,” Scr. Mater. 54 (4), 503–508 (2006). CrossRef
9.
go back to reference A. Aldoshan and S. Khanna, “Effect of relative density on the dynamic compressive behavior of carbon nanotube reinforced aluminum foam,” Mater. Sci. Eng., A 689, 17–24 (2017). CrossRef A. Aldoshan and S. Khanna, “Effect of relative density on the dynamic compressive behavior of carbon nanotube reinforced aluminum foam,” Mater. Sci. Eng., A 689, 17–24 (2017). CrossRef
10.
go back to reference C. Liu, M. Zhang, and C. Chen, “Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg–Ca alloys produced by laser additive manufacturing,” Mater. Sci. Eng., A 703, 359–371 (2017). CrossRef C. Liu, M. Zhang, and C. Chen, “Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg–Ca alloys produced by laser additive manufacturing,” Mater. Sci. Eng., A 703, 359–371 (2017). CrossRef
11.
go back to reference J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, “A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends,” J. Mater. Sci. Technol. 35 (2), 270–284 (2019). CrossRef J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, “A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends,” J. Mater. Sci. Technol. 35 (2), 270–284 (2019). CrossRef
12.
go back to reference J. Song, W. Wu, L. Zhang, B. He, L. Lu, X. Ni, Q. Long, and G. Zhu, “Role of scanning strategy on residual stress distribution in Ti–6Al–4V alloy prepared by selective laser melting,” Optik 170, 342–352 (2018). CrossRef J. Song, W. Wu, L. Zhang, B. He, L. Lu, X. Ni, Q. Long, and G. Zhu, “Role of scanning strategy on residual stress distribution in Ti–6Al–4V alloy prepared by selective laser melting,” Optik 170, 342–352 (2018). CrossRef
13.
go back to reference F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E. P. Ambrosio, M. Lombardi, P. Fino, and D. Manfredi, “On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties,” Materials (Basel) 10 (1), 76 (2017). CrossRef F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E. P. Ambrosio, M. Lombardi, P. Fino, and D. Manfredi, “On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties,” Materials (Basel) 10 (1), 76 (2017). CrossRef
14.
go back to reference L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K. N. Amato, P. W. Shindo, F. R. Medina, and R. B. Wicker, “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” J. Mater. Sci. Technol. 28 (1), 1–14 (2012). CrossRef L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K. N. Amato, P. W. Shindo, F. R. Medina, and R. B. Wicker, “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” J. Mater. Sci. Technol. 28 (1), 1–14 (2012). CrossRef
15.
go back to reference J. Wu, X. Q. Wang, W. Wang, M. M. Attallah, and M. H. Loretto, “Microstructure and strength of selectively laser melted AlSi10Mg,” Acta Mater. 117, 311–320 (2016). CrossRef J. Wu, X. Q. Wang, W. Wang, M. M. Attallah, and M. H. Loretto, “Microstructure and strength of selectively laser melted AlSi10Mg,” Acta Mater. 117, 311–320 (2016). CrossRef
16.
go back to reference E. O. Olakanmi, R. F. Cochrane, and K. W. Dalgarno, “A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure, and properties,” Prog. Mater. Sci. 74, 401–477 (2015). CrossRef E. O. Olakanmi, R. F. Cochrane, and K. W. Dalgarno, “A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure, and properties,” Prog. Mater. Sci. 74, 401–477 (2015). CrossRef
17.
go back to reference E. Louvis, P. Fox, and C. J. Sutcliffe, “Selective laser melting of aluminum components,” J. Mater. Process. Technol. 211 (2), 275–284 (2011). CrossRef E. Louvis, P. Fox, and C. J. Sutcliffe, “Selective laser melting of aluminum components,” J. Mater. Process. Technol. 211 (2), 275–284 (2011). CrossRef
18.
go back to reference W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi, “Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism,” Mater. Sci. Eng., A 663, 116–125 (2016). CrossRef W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi, “Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism,” Mater. Sci. Eng., A 663, 116–125 (2016). CrossRef
19.
go back to reference Z. Hu, H. Zhang, H. Zhu, Z. Xiao, X. Nie, and X. Zeng, “Microstructure, mechanical properties and strengthening mechanisms of AlCu5MnCdVA aluminum alloy fabricated by selective laser melting,” Mater. Sci. Eng., A 759, 154–166 (2019). CrossRef Z. Hu, H. Zhang, H. Zhu, Z. Xiao, X. Nie, and X. Zeng, “Microstructure, mechanical properties and strengthening mechanisms of AlCu5MnCdVA aluminum alloy fabricated by selective laser melting,” Mater. Sci. Eng., A 759, 154–166 (2019). CrossRef
20.
go back to reference M. Liu, N. Takata, A. Suzuki, and M. Kobashi, “Microstructural characterization of cellular AlSi10Mg alloy fabricated by selective laser melting,” Mater. Des. 157, 478–491 (2018). CrossRef M. Liu, N. Takata, A. Suzuki, and M. Kobashi, “Microstructural characterization of cellular AlSi10Mg alloy fabricated by selective laser melting,” Mater. Des. 157, 478–491 (2018). CrossRef
21.
go back to reference O. Gharbi, D. Jiang, D. R. Feenstra, S. K. Kairy, Y. Wu, C. R. Hutchinson, and N. Birbilis, “On the corrosion of additively manufactured aluminum alloy AA2024 prepared by selective laser melting,” Corros. Sci. 143, 93–106 (2018). CrossRef O. Gharbi, D. Jiang, D. R. Feenstra, S. K. Kairy, Y. Wu, C. R. Hutchinson, and N. Birbilis, “On the corrosion of additively manufactured aluminum alloy AA2024 prepared by selective laser melting,” Corros. Sci. 143, 93–106 (2018). CrossRef
22.
go back to reference Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, and X. Wu, “Selective laser melting of a high strength Al–Mn–Sc alloy: alloy design and strengthening mechanisms,” Acta Mater. 171, 108–118 (2019). CrossRef Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, and X. Wu, “Selective laser melting of a high strength Al–Mn–Sc alloy: alloy design and strengthening mechanisms,” Acta Mater. 171, 108–118 (2019). CrossRef
23.
go back to reference T. Kimura, T. Nakamoto, T. Ozaki, K. Sugita, M. Mizuno, and H. Araki, “Microstructural formation and characterization mechanisms of selective laser melted Al–Si–Mg alloys with increasing magnesium content,” Mater. Sci. Eng., A 754, 786–798 (2019). CrossRef T. Kimura, T. Nakamoto, T. Ozaki, K. Sugita, M. Mizuno, and H. Araki, “Microstructural formation and characterization mechanisms of selective laser melted Al–Si–Mg alloys with increasing magnesium content,” Mater. Sci. Eng., A 754, 786–798 (2019). CrossRef
24.
go back to reference T. Kimura and T. Nakamoto, “Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting,” Mater. Des. 89, 1294–1301 (2016). CrossRef T. Kimura and T. Nakamoto, “Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting,” Mater. Des. 89, 1294–1301 (2016). CrossRef
25.
go back to reference G. H. Zeng, T. Song, Y. H. Dai, H.P. Tang, and M. Yan, “3D printed breathable mould steel: Small micrometer-sized, interconnected pores by creatively introducing foaming agent to additive manufacturing,” Mater. Des. 169, 107693 (2019). CrossRef G. H. Zeng, T. Song, Y. H. Dai, H.P. Tang, and M. Yan, “3D printed breathable mould steel: Small micrometer-sized, interconnected pores by creatively introducing foaming agent to additive manufacturing,” Mater. Des. 169, 107693 (2019). CrossRef
26.
go back to reference M. Zhang, C. Chen, and Y. Huang, “Laser additive manufacturing foam aluminum–12  wt % silicon with different addition TiH 2 foaming agent,” Mater. Sci. Technol. 34 (8), 968–981 (2017). CrossRef M. Zhang, C. Chen, and Y. Huang, “Laser additive manufacturing foam aluminum–12  wt % silicon with different addition TiH 2 foaming agent,” Mater. Sci. Technol. 34 (8), 968–981 (2017). CrossRef
27.
go back to reference X. Feng, Z. Zhang, X. Cui, G. Jin, W. Zheng, and H. Liu, “Additive manufactured closed-cell aluminum alloy foams via laser melting deposition process,” Mater. Lett. 233, 126–129 (2018). CrossRef X. Feng, Z. Zhang, X. Cui, G. Jin, W. Zheng, and H. Liu, “Additive manufactured closed-cell aluminum alloy foams via laser melting deposition process,” Mater. Lett. 233, 126–129 (2018). CrossRef
28.
go back to reference B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka, “Modification of titanium hydride for improved aluminum foam manufacture,” Acta Mater. 54 (7), 1887–1900 (2006). CrossRef B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka, “Modification of titanium hydride for improved aluminum foam manufacture,” Acta Mater. 54 (7), 1887–1900 (2006). CrossRef
29.
go back to reference Ľ. Orovčík, M. Nosko, P. Švec, Š. Nagy, M. Čavojský, F. Simančík, and J. Jerz, “Effect of the TiH 2 pre-treatment on the energy absorption ability of 6061 aluminum alloy foam,” Mater. Lett. 148, 82–85 (2015). CrossRef Ľ. Orovčík, M. Nosko, P. Švec, Š. Nagy, M. Čavojský, F. Simančík, and J. Jerz, “Effect of the TiH 2 pre-treatment on the energy absorption ability of 6061 aluminum alloy foam,” Mater. Lett. 148, 82–85 (2015). CrossRef
30.
go back to reference B. Muduli, T. Ramesh, K. C. H. Kumar, N. Rajalakshmi, and M. Mukherjee, “Customized heat treatment of TiH 2 for the foaming of aluminum alloys,” Materialia 8, 100431 (2019). CrossRef B. Muduli, T. Ramesh, K. C. H. Kumar, N. Rajalakshmi, and M. Mukherjee, “Customized heat treatment of TiH 2 for the foaming of aluminum alloys,” Materialia 8, 100431 (2019). CrossRef
31.
go back to reference A. Azarniya and A. Rasooli, “High-temperature mechanisms of hydrogen evolution in Ni–P coated titanium hydride (TiH 2) powder,” Adv. Powder Technol. 27 (1), 281–288 (2016). CrossRef A. Azarniya and A. Rasooli, “High-temperature mechanisms of hydrogen evolution in Ni–P coated titanium hydride (TiH 2) powder,” Adv. Powder Technol. 27 (1), 281–288 (2016). CrossRef
32.
go back to reference D. Mandrino, I. Paulin, and S. D. Škapin, “Scanning electron microscopy, X-ray diffraction and thermal analysis study of the TiH 2 foaming agent,” Mater. Charact. 72, 87–93 (2012). CrossRef D. Mandrino, I. Paulin, and S. D. Škapin, “Scanning electron microscopy, X-ray diffraction and thermal analysis study of the TiH 2 foaming agent,” Mater. Charact. 72, 87–93 (2012). CrossRef
33.
go back to reference N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, Ch. Tuck, and R. Hague, “3D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting,” Prog. Mater. Sci. 106, 100578 (2019). CrossRef N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, Ch. Tuck, and R. Hague, “3D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting,” Prog. Mater. Sci. 106, 100578 (2019). CrossRef
34.
go back to reference P. Wang, H. C. Li, K. G. Prashanth, J. Eckert, and S. Scudino, “Selective laser melting of Al-Zn–Mg–Cu: heat treatment, microstructure and mechanical properties,” J. Alloys Compd. 707, 287–290 (2017). CrossRef P. Wang, H. C. Li, K. G. Prashanth, J. Eckert, and S. Scudino, “Selective laser melting of Al-Zn–Mg–Cu: heat treatment, microstructure and mechanical properties,” J. Alloys Compd. 707, 287–290 (2017). CrossRef
35.
go back to reference H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, “Selective laser melting of high strength Al–Cu–Mg alloys: processing, microstructure and mechanical properties,” Mater. Sci. Eng., A 656, 47–54 (2016). CrossRef H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, “Selective laser melting of high strength Al–Cu–Mg alloys: processing, microstructure and mechanical properties,” Mater. Sci. Eng., A 656, 47–54 (2016). CrossRef
Metadata
Title
Effect of TiH2 Oxidation Treatment on Foamed Aluminum Alloys Produced by Selective Laser Melting
Authors
Jintao An
Changjun Chen
Min Zhang
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2113007X