Skip to main content
Top
Published in: Fluid Dynamics 6/2020

01-11-2020

Effect of Viscous Friction Reduction by Blocking Dissipation

Authors: A. A. Abramov, F. A. Abramov, A. V. Butkovskii, S. L. Chernyshev

Published in: Fluid Dynamics | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract—

The steady-state Couette flow between two plane-parallel plates of finite thickness is considered. Fluids with the viscosity that decreases with increase in the temperature are considered. It is shown that the isothermality condition across the plates can be violated in the practically important case of small distances between the plates. This leads to the possibility of using dissipation to heat the fluid and, as a result, to significant reduction in friction without additional energy supply.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Choi, K.-S., European drag-reduction research—recent developments and current status, Fluid Dynamics Research, 2000, vol. 26, no. 5, pp. 325–335.ADSCrossRef Choi, K.-S., European drag-reduction research—recent developments and current status, Fluid Dynamics Research, 2000, vol. 26, no. 5, pp. 325–335.ADSCrossRef
2.
go back to reference Bushnell, D.M., Aircraft drag reduction—a review, Proc. Inst. Mech. Eng., 2003, vol. 217, no. 1, pp. 1–18.CrossRef Bushnell, D.M., Aircraft drag reduction—a review, Proc. Inst. Mech. Eng., 2003, vol. 217, no. 1, pp. 1–18.CrossRef
3.
go back to reference Ashill, P.R., Fulker, J.L., and Hackett, K.C., A review of recent developments in flow control, The Aeronautical J., 2005, vol. 109, no. 1095, pp. 205–232.CrossRef Ashill, P.R., Fulker, J.L., and Hackett, K.C., A review of recent developments in flow control, The Aeronautical J., 2005, vol. 109, no. 1095, pp. 205–232.CrossRef
4.
go back to reference Kornilov, V.I., Problems of turbulent friction reduction using active and passive methods (a review), Teplofizika i aeromekhanika, 2005, vol. 12, no. 2, pp. 183–208. Kornilov, V.I., Problems of turbulent friction reduction using active and passive methods (a review), Teplofizika i aeromekhanika, 2005, vol. 12, no. 2, pp. 183–208.
5.
go back to reference Brutyan, M.A.,Zadachi upravleniya techeniem zhidkosti i gaza (Problems of Liquid and Gas Flow Control), Moscow, Nauka, 2015. Brutyan, M.A.,Zadachi upravleniya techeniem zhidkosti i gaza (Problems of Liquid and Gas Flow Control), Moscow, Nauka, 2015.
6.
go back to reference Beck, N., Landa, T., Seitz, A., Boermans, L., Liu, Y., and Radespiel, R., Drag reduction by laminar flow control, Energies, 2018, vol. 11, no. 1, p. 252.CrossRef Beck, N., Landa, T., Seitz, A., Boermans, L., Liu, Y., and Radespiel, R., Drag reduction by laminar flow control, Energies, 2018, vol. 11, no. 1, p. 252.CrossRef
7.
go back to reference Corke, T.C. and Thomas, F.O., Active and passive turbulent boundary-layer drag reduction, AIAA J., 2018, vol. 56, no. 10, pp. 3835–3847.ADSCrossRef Corke, T.C. and Thomas, F.O., Active and passive turbulent boundary-layer drag reduction, AIAA J., 2018, vol. 56, no. 10, pp. 3835–3847.ADSCrossRef
8.
go back to reference Frohnapfel, B., Flow control of near-wall turbulence, PhD Thesis, Aachen: University of Erlangen–Nuremberg, Shaker Verlag, 2007. Frohnapfel, B., Flow control of near-wall turbulence, PhD Thesis, Aachen: University of Erlangen–Nuremberg, Shaker Verlag, 2007.
9.
go back to reference Frohnapfel, B., Jovanovic, J., and Delgado, A., Experimental investigation of turbulent drag reduction by surface-embedded grooves, J. Fluid Mech., 2007, vol. 590, pp. 107–116.ADSCrossRef Frohnapfel, B., Jovanovic, J., and Delgado, A., Experimental investigation of turbulent drag reduction by surface-embedded grooves, J. Fluid Mech., 2007, vol. 590, pp. 107–116.ADSCrossRef
10.
go back to reference Frohnapfel, B., Hasegawa, Y., and Quadrio M., Money versus time: evaluation of flow control in terms of energy consumption and convenience, J. Fluid Mech., 2012, vol. 700, pp. 406–418.ADSCrossRef Frohnapfel, B., Hasegawa, Y., and Quadrio M., Money versus time: evaluation of flow control in terms of energy consumption and convenience, J. Fluid Mech., 2012, vol. 700, pp. 406–418.ADSCrossRef
11.
go back to reference Marusic, I., Joseph, D.D., and Mahesh, K., Laminar and turbulent comparisons for channel flow and flow control, J. Fluid Mech., 2007, vol. 570, pp. 467–477.ADSMathSciNetCrossRef Marusic, I., Joseph, D.D., and Mahesh, K., Laminar and turbulent comparisons for channel flow and flow control, J. Fluid Mech., 2007, vol. 570, pp. 467–477.ADSMathSciNetCrossRef
12.
go back to reference Fukagata, K., Sugiyama, K., and Kasagi, N., On the lower bound of net driving power in controlled duct flows, Physica D: Nonlinear Phenomena, 2009, vol. 238, no. 13. pp. 1082–1086.ADSMathSciNetCrossRef Fukagata, K., Sugiyama, K., and Kasagi, N., On the lower bound of net driving power in controlled duct flows, Physica D: Nonlinear Phenomena, 2009, vol. 238, no. 13. pp. 1082–1086.ADSMathSciNetCrossRef
13.
go back to reference Daschiel, G., Strategies to reduce friction losses and their implications for the energy efficient design of internal flow domains, PhD Thesis, Karlsruhe: Karlsruhe Institute of Technology, KIT Scientific Publ., 2014. Daschiel, G., Strategies to reduce friction losses and their implications for the energy efficient design of internal flow domains, PhD Thesis, Karlsruhe: Karlsruhe Institute of Technology, KIT Scientific Publ., 2014.
14.
go back to reference Yershin, Sh.A., Paradoxes in Aerohydrodynamics, Cham.: Springer International Publishing AG, 2017, р. 375.CrossRef Yershin, Sh.A., Paradoxes in Aerohydrodynamics, Cham.: Springer International Publishing AG, 2017, р. 375.CrossRef
15.
go back to reference Kaganov, S.A., Fluid flow between rotating coaxial cylinders with regard to the friction heat and the temperature dependence of viscosity, Inzn.-Fiz. Zh., 1965, vol. 8, no. 1, pp. 307–310. Kaganov, S.A., Fluid flow between rotating coaxial cylinders with regard to the friction heat and the temperature dependence of viscosity, Inzn.-Fiz. Zh., 1965, vol. 8, no. 1, pp. 307–310.
16.
go back to reference Abramov, A.A. and Butkovskii, A.V., The extended Reynolds analogy for the Couette problem: similarity parameters, Int. J. Heat Mass Transfer, 2018, vol. 117, pp. 313–318.CrossRef Abramov, A.A. and Butkovskii, A.V., The extended Reynolds analogy for the Couette problem: similarity parameters, Int. J. Heat Mass Transfer, 2018, vol. 117, pp. 313–318.CrossRef
17.
go back to reference Shepelev, V.A. and Shepelev, A.V., www.highexpert.ru/content/liquids/oil.html Shepelev, V.A. and Shepelev, A.V., www.highexpert.ru/content/liquids/oil.html
18.
go back to reference Shepelev, V.A. and Shepelev, A.V., www.highexpert.ru/content/liquids/water.html Shepelev, V.A. and Shepelev, A.V., www.highexpert.ru/content/liquids/water.html
19.
go back to reference Landau, L.D. and Lifshitz, E.M., Theoretical Physics, vol. 6. Fluid Mechanics. New York: Pergamon, 2013. Landau, L.D. and Lifshitz, E.M., Theoretical Physics, vol. 6. Fluid Mechanics. New York: Pergamon, 2013.
Metadata
Title
Effect of Viscous Friction Reduction by Blocking Dissipation
Authors
A. A. Abramov
F. A. Abramov
A. V. Butkovskii
S. L. Chernyshev
Publication date
01-11-2020
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 6/2020
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462820060014

Other articles of this Issue 6/2020

Fluid Dynamics 6/2020 Go to the issue

Premium Partners