Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 9/2022

15-03-2022 | Technical Article

Effect of Zinc and Bio-Glass Addition on Mechanical Properties and Corrosion Behavior of Magnesium-Based Composites for Orthopedic Application: A Preliminary Study

Authors: K. V. Sandeep Moudgalya, Prithivirajan Sekar, H. Suresh Hebbar, M. R. Rahman

Published in: Journal of Materials Engineering and Performance | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnesium is extensively researched as a biodegradable implant material. However, achieving a combination of biomechanical properties viz., controlled degradation, bio-transformability and osteoconductivity is highly challenging. Indeed, bio-composites developed by reinforcing bio-ceramics with metals are gaining research interest. In this current work, the suitability of a bio-composite developed by reinforcing 5, 10 and 15% of bioglass (BG) in Mg and Mg-3 wt.% Zn metal matrix is investigated. The bio-composites containing Mg, Mg-BG and Mg-Zn-BG are processed by vacuum sintering and tested for important mechanical and corrosion properties. Particle size analysis revealed that magnesium exhibited a larger mean particle size while zinc evinced the lowest average particle size. The density-porosity analysis showed that porosity was found to increase linearly with the addition of BG. In contrast, the compressive strength of Mg-BG and Mg-Zn-BG composites increased up to 10 wt.% BG and decreased drastically for 15 wt.% BG reinforcement. The addition of Zn and BG significantly enhanced the Vickers hardness, showing an increasing trend with the increase in BG reinforcement content. Immersion corrosion study in phosphate buffered saline revealed that 10 wt.% BG reinforced composite exhibited the least corrosion rate. Thus, composites developed by reinforcing BG in Mg-3Zn metal matrix showed enhanced mechanical and corrosion properties in the physiological environment. The possible corrosion mechanism of Mg, Mg-Zn and Mg-Zn-BG composites is also proposed and compared.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference P. Jeyachandran, S. Bontha, S. Bodhak, V.K. Balla, B. Kundu, and M. Doddamani, Mechanical Behaviour of Additively Manufactured Bioactive Glass/High Density Polyethylene Composites, J. Mech. Behav. Biomed. Mater, 2020, 108, p 103830.CrossRef P. Jeyachandran, S. Bontha, S. Bodhak, V.K. Balla, B. Kundu, and M. Doddamani, Mechanical Behaviour of Additively Manufactured Bioactive Glass/High Density Polyethylene Composites, J. Mech. Behav. Biomed. Mater, 2020, 108, p 103830.CrossRef
2.
go back to reference S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, Bone Tissue Engineering Using 3D Printing, Mater. Today, 2013, 16(12), p 496–504.CrossRef S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, Bone Tissue Engineering Using 3D Printing, Mater. Today, 2013, 16(12), p 496–504.CrossRef
3.
go back to reference N.T. Kirkland, N. Birbilis, and M.P. Staiger, Assessing the Corrosion of Biodegradable Magnesium Implants: A Critical Review of Current Methodologies and Their Limitations, Acta Biomater., 2012, 8(3), p 925–936.CrossRef N.T. Kirkland, N. Birbilis, and M.P. Staiger, Assessing the Corrosion of Biodegradable Magnesium Implants: A Critical Review of Current Methodologies and Their Limitations, Acta Biomater., 2012, 8(3), p 925–936.CrossRef
4.
go back to reference F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Degradable Biomaterials Based on Magnesium Corrosion, Curr. Opin. Solid State Mater. Sci., 2008, 12(5–6), p 63–72.CrossRef F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Degradable Biomaterials Based on Magnesium Corrosion, Curr. Opin. Solid State Mater. Sci., 2008, 12(5–6), p 63–72.CrossRef
5.
go back to reference H. Yoshikawa and, A. Myoui, Bone Tissue Engineering with Porous Hydroxyapatite Ceramics, J. Artif. Organs, 2005, 8(3), p 131–136.CrossRef H. Yoshikawa and, A. Myoui, Bone Tissue Engineering with Porous Hydroxyapatite Ceramics, J. Artif. Organs, 2005, 8(3), p 131–136.CrossRef
6.
go back to reference F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Störmer, C. Blawert, W. Dietzel, and N. Hort, Biodegradable Magnesium–Hydroxyapatite Metal Matrix Composites, Biomaterials, 2007, 28(13), p 2163–2174.CrossRef F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Störmer, C. Blawert, W. Dietzel, and N. Hort, Biodegradable Magnesium–Hydroxyapatite Metal Matrix Composites, Biomaterials, 2007, 28(13), p 2163–2174.CrossRef
7.
go back to reference S. Jaiswal, R.M. Kumar, P. Gupta, M. Kumaraswamy, P. Roy, and D. Lahiri, Mechanical, Corrosion and Biocompatibility Behaviour of Mg-3Zn-HA Biodegradable Composites for Orthopaedic Fixture Accessories, J. Mech. Behav. Biomed. Mater, 2018, 78, p 442–454.CrossRef S. Jaiswal, R.M. Kumar, P. Gupta, M. Kumaraswamy, P. Roy, and D. Lahiri, Mechanical, Corrosion and Biocompatibility Behaviour of Mg-3Zn-HA Biodegradable Composites for Orthopaedic Fixture Accessories, J. Mech. Behav. Biomed. Mater, 2018, 78, p 442–454.CrossRef
8.
go back to reference Y. Wan, T. Cui, W. Li, C. Li, J. Xiao, Y. Zhu, D. Ji, G. Xiong, and H. Luo, Mechanical and Biological Properties of Bioglass/Magnesium Composites Prepared via Microwave Sintering Route, Mater. Des., 2016, 99, p 521–527.CrossRef Y. Wan, T. Cui, W. Li, C. Li, J. Xiao, Y. Zhu, D. Ji, G. Xiong, and H. Luo, Mechanical and Biological Properties of Bioglass/Magnesium Composites Prepared via Microwave Sintering Route, Mater. Des., 2016, 99, p 521–527.CrossRef
9.
go back to reference K. Kowalski, M.U. Jurczyk, P.K. Wirstlein, J. Jakubowicz, and M. Jurczyk, Bioglass Addition on Microstructure and Properties of Ultrafine Grained (Mg-4Y-5.5 Dy-0.5 Zr) Alloy, Mater. Sci. Eng. B, 2017, 219, p 28–36.CrossRef K. Kowalski, M.U. Jurczyk, P.K. Wirstlein, J. Jakubowicz, and M. Jurczyk, Bioglass Addition on Microstructure and Properties of Ultrafine Grained (Mg-4Y-5.5 Dy-0.5 Zr) Alloy, Mater. Sci. Eng. B, 2017, 219, p 28–36.CrossRef
10.
go back to reference S. Dutta, K.B. Devi, S. Gupta, B. Kundu, V.K. Balla, and M. Roy, Mechanical and In Vitro Degradation Behavior of Magnesium-Bioactive Glass Composites Prepared by SPS for Biomedical Applications, J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(2), p 352–365.CrossRef S. Dutta, K.B. Devi, S. Gupta, B. Kundu, V.K. Balla, and M. Roy, Mechanical and In Vitro Degradation Behavior of Magnesium-Bioactive Glass Composites Prepared by SPS for Biomedical Applications, J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(2), p 352–365.CrossRef
11.
go back to reference S. Dutta, K.B. Devi, S. Mandal, A. Mahato, S. Gupta, B. Kundu, V.K. Balla, and M. Roy, In Vitro corrosion and Cytocompatibility Studies of Hot Press Sintered Magnesium-Bioactive Glass Composite, Materialia, 2019, 5, p 100245.CrossRef S. Dutta, K.B. Devi, S. Mandal, A. Mahato, S. Gupta, B. Kundu, V.K. Balla, and M. Roy, In Vitro corrosion and Cytocompatibility Studies of Hot Press Sintered Magnesium-Bioactive Glass Composite, Materialia, 2019, 5, p 100245.CrossRef
12.
go back to reference S. Nayak, B. Bhushan, R. Jayaganthan, P. Gopinath, R.D. Agarwal, and D. Lahiri, Strengthening of Mg Based Alloy Through Grain Refinement for Orthopaedic Application, J. Mech. Behav. Biomed. Mater., 2016, 59, p 57–70.CrossRef S. Nayak, B. Bhushan, R. Jayaganthan, P. Gopinath, R.D. Agarwal, and D. Lahiri, Strengthening of Mg Based Alloy Through Grain Refinement for Orthopaedic Application, J. Mech. Behav. Biomed. Mater., 2016, 59, p 57–70.CrossRef
13.
go back to reference B.P. Zhang, Y. Wang, and L. Geng, Research on Mg-Zn-Ca Alloy as Degradable Biomaterial, Biomater.—Phys. Chem., 2011, p 184–204 B.P. Zhang, Y. Wang, and L. Geng, Research on Mg-Zn-Ca Alloy as Degradable Biomaterial, Biomater.—Phys. Chem., 2011, p 184–204
14.
go back to reference P. Sekar, S. Narendranath, and V. Desai, Recent Progress in in Vivo Studies and Clinical Applications of Magnesium Based Biodegradable Implants: A Review, J. Magnes. Alloys, 2021, 9(4), p 1147–1163.CrossRef P. Sekar, S. Narendranath, and V. Desai, Recent Progress in in Vivo Studies and Clinical Applications of Magnesium Based Biodegradable Implants: A Review, J. Magnes. Alloys, 2021, 9(4), p 1147–1163.CrossRef
15.
go back to reference S. Prithivirajan, S. Narendranath, and V. Desai, Analysing the Combined Effect of Crystallographic Orientation and Grain Refinement on Mechanical Properties and Corrosion Behaviour of ECAPed ZE41 Mg Alloy, J. Magnes. Alloys, 2020, 8(4), p 1128–1143.CrossRef S. Prithivirajan, S. Narendranath, and V. Desai, Analysing the Combined Effect of Crystallographic Orientation and Grain Refinement on Mechanical Properties and Corrosion Behaviour of ECAPed ZE41 Mg Alloy, J. Magnes. Alloys, 2020, 8(4), p 1128–1143.CrossRef
16.
go back to reference P. Sekar, N. Sanna, and V. Desai, Enhancement of Resistance to Galvanic Corrosion of ZE41 Mg Alloy by Equal Channel Angular Pressing, Mater. Corros., 2020, 71(4), p 571–584.CrossRef P. Sekar, N. Sanna, and V. Desai, Enhancement of Resistance to Galvanic Corrosion of ZE41 Mg Alloy by Equal Channel Angular Pressing, Mater. Corros., 2020, 71(4), p 571–584.CrossRef
17.
go back to reference H. Duan, C. Cao, X. Wang, J. Tao, C. Li, H. Xin, J. Yang, Y. Song, and F. Ai, Magnesium-Alloy Rods Reinforced Bioglass Bone Cement Composite Scaffolds with Cortical Bone-Matching Mechanical Properties and Excellent Osteoconductivity for Load-Bearing Bone In Vivo Regeneration, Sci. Rep., 2020, 10(1), p 1–14.CrossRef H. Duan, C. Cao, X. Wang, J. Tao, C. Li, H. Xin, J. Yang, Y. Song, and F. Ai, Magnesium-Alloy Rods Reinforced Bioglass Bone Cement Composite Scaffolds with Cortical Bone-Matching Mechanical Properties and Excellent Osteoconductivity for Load-Bearing Bone In Vivo Regeneration, Sci. Rep., 2020, 10(1), p 1–14.CrossRef
18.
go back to reference E.P.S. Nidadavolu, D. Krüger, B. Zeller-Plumhoff, D. Tolnai, B. Wiese, F. Feyerabend, T. Ebel, and R. Willumeit-Römer, Pore Characterization of PM Mg–0.6 Ca Alloy and its Degradation Behavior Under Physiological Conditions, J. Magnes. Alloys, 2020, 9(2), p 686–703.CrossRef E.P.S. Nidadavolu, D. Krüger, B. Zeller-Plumhoff, D. Tolnai, B. Wiese, F. Feyerabend, T. Ebel, and R. Willumeit-Römer, Pore Characterization of PM Mg–0.6 Ca Alloy and its Degradation Behavior Under Physiological Conditions, J. Magnes. Alloys, 2020, 9(2), p 686–703.CrossRef
19.
go back to reference R. Havaldar, S.C. Pilli, and B.B. Putti, Insights into the Effects of Tensile and Compressive Loadings on Human Femur Bone, Adv. Biomed. Res., 2014, 3, p 101.CrossRef R. Havaldar, S.C. Pilli, and B.B. Putti, Insights into the Effects of Tensile and Compressive Loadings on Human Femur Bone, Adv. Biomed. Res., 2014, 3, p 101.CrossRef
20.
go back to reference M. Knapek, M. Zemková, A. Greš, E. Jablonská, F. Lukáč, R. Král, J. Bohlen, and P. Minárik, Corrosion and Mechanical Properties of a Novel Biomedical WN43 Magnesium Alloy Prepared by Spark Plasma Sintering, J. Magnes. Alloys, 2021, 9(3), p 853–865.CrossRef M. Knapek, M. Zemková, A. Greš, E. Jablonská, F. Lukáč, R. Král, J. Bohlen, and P. Minárik, Corrosion and Mechanical Properties of a Novel Biomedical WN43 Magnesium Alloy Prepared by Spark Plasma Sintering, J. Magnes. Alloys, 2021, 9(3), p 853–865.CrossRef
21.
go back to reference D. Dvorský, J. Kubásek, M. Roudnická, F. Průša, D. Nečas, P. Minárik, J. Stráská, and D. Vojtěch, The Effect of Powder Size on the Mechanical and Corrosion Properties and the Ignition Temperature of WE43 Alloy Prepared by Spark Plasma Sintering, J. Magnes. Alloys, 2021, 9(4), p 1349–1362.CrossRef D. Dvorský, J. Kubásek, M. Roudnická, F. Průša, D. Nečas, P. Minárik, J. Stráská, and D. Vojtěch, The Effect of Powder Size on the Mechanical and Corrosion Properties and the Ignition Temperature of WE43 Alloy Prepared by Spark Plasma Sintering, J. Magnes. Alloys, 2021, 9(4), p 1349–1362.CrossRef
22.
go back to reference J. Walker, S. Shadanbaz, N.T. Kirkland, E. Stace, T. Woodfield, M.P. Staiger, and G.J. Dias, Magnesium Alloys: Predicting In Vivo Corrosion with In Vitro Immersion Testing, J. Biomed. Mater. Res. Part B Appl. Biomater., 2012, 100, p 1134–1141.CrossRef J. Walker, S. Shadanbaz, N.T. Kirkland, E. Stace, T. Woodfield, M.P. Staiger, and G.J. Dias, Magnesium Alloys: Predicting In Vivo Corrosion with In Vitro Immersion Testing, J. Biomed. Mater. Res. Part B Appl. Biomater., 2012, 100, p 1134–1141.CrossRef
23.
go back to reference A.D. King, N. Birbilis, and J.R. Scully, Accurate Electrochemical Measurement of Magnesium Corrosion Rates; A Combined Impedance, Mass-Loss and Hydrogen Collection Study, Electrochem. Acta, 2014, 121, p 394–406.CrossRef A.D. King, N. Birbilis, and J.R. Scully, Accurate Electrochemical Measurement of Magnesium Corrosion Rates; A Combined Impedance, Mass-Loss and Hydrogen Collection Study, Electrochem. Acta, 2014, 121, p 394–406.CrossRef
24.
go back to reference M.C. Zhao, M. Liu, G.L. Song, and A. Atrens, Influence of pH and Chloride Ion Concentration on the Corrosion of Mg Alloy ZE41, Corros. Sci., 2008, 50(11), p 3168–3178.CrossRef M.C. Zhao, M. Liu, G.L. Song, and A. Atrens, Influence of pH and Chloride Ion Concentration on the Corrosion of Mg Alloy ZE41, Corros. Sci., 2008, 50(11), p 3168–3178.CrossRef
25.
go back to reference N. Dinodi and, A.N. Shetty, Alkyl Carboxylates as Efficient and Green Inhibitors of Magnesium Alloy ZE41 Corrosion in Aqueous Salt Solution, Corros. Sci., 2014, 85, p 411–427.CrossRef N. Dinodi and, A.N. Shetty, Alkyl Carboxylates as Efficient and Green Inhibitors of Magnesium Alloy ZE41 Corrosion in Aqueous Salt Solution, Corros. Sci., 2014, 85, p 411–427.CrossRef
26.
go back to reference M. Jamesh, S. Kumar, and T.S. Narayanan, Corrosion Behavior of Commercially Pure Mg and ZM21 Mg Alloy in Ringer’s Solution–Long Term Evaluation by EIS, Corros. Sci., 2011, 53(2), p 645–654.CrossRef M. Jamesh, S. Kumar, and T.S. Narayanan, Corrosion Behavior of Commercially Pure Mg and ZM21 Mg Alloy in Ringer’s Solution–Long Term Evaluation by EIS, Corros. Sci., 2011, 53(2), p 645–654.CrossRef
27.
go back to reference D. Mei, S.V. Lamaka, X. Lu, and M.L. Zheludkevich, Selecting Medium for Corrosion Testing of Bioabsorbable Magnesium and Other Metals–A Critical Review, Corros. Sci., 2020, 171, p 108722.CrossRef D. Mei, S.V. Lamaka, X. Lu, and M.L. Zheludkevich, Selecting Medium for Corrosion Testing of Bioabsorbable Magnesium and Other Metals–A Critical Review, Corros. Sci., 2020, 171, p 108722.CrossRef
28.
go back to reference D. Mei, C. Wang, S.V. Lamaka, and M.L. Zheludkevich, Clarifying the Influence of Albumin on the Initial Stages of Magnesium Corrosion in Hank’s Balanced Salt Solution, J. Magnes. Alloys, 2020, 9(3), p 805–817.CrossRef D. Mei, C. Wang, S.V. Lamaka, and M.L. Zheludkevich, Clarifying the Influence of Albumin on the Initial Stages of Magnesium Corrosion in Hank’s Balanced Salt Solution, J. Magnes. Alloys, 2020, 9(3), p 805–817.CrossRef
29.
go back to reference P.N. Lim, R.N. Lam, Y.F. Zheng, and E.S. Thian, Magnesium-Calcium/Hydroxyapatite (Mg-Ca/HA) Composites with Enhanced Bone Differentiation Properties for Orthopedic Applications, Mater. Lett., 2016, 172, p 193–219.CrossRef P.N. Lim, R.N. Lam, Y.F. Zheng, and E.S. Thian, Magnesium-Calcium/Hydroxyapatite (Mg-Ca/HA) Composites with Enhanced Bone Differentiation Properties for Orthopedic Applications, Mater. Lett., 2016, 172, p 193–219.CrossRef
31.
go back to reference M. Kang, Y. Estrin, H. Jung, S. Kim, S. Lee, H. Kim, and Y. Koh, Production and Bio-Corrosion Resistance of Porous Magnesium with Hydroxyapatite Coating for Biomedical Applications, Mater. Lett., 2013, 108, p 122–124.CrossRef M. Kang, Y. Estrin, H. Jung, S. Kim, S. Lee, H. Kim, and Y. Koh, Production and Bio-Corrosion Resistance of Porous Magnesium with Hydroxyapatite Coating for Biomedical Applications, Mater. Lett., 2013, 108, p 122–124.CrossRef
32.
go back to reference V.S. Yadav, M.R. Sankar, and L.M. Pandey, Coating of Bioactive Glass on Magnesium Alloys to Improve its Degradation Behavior: Interfacial Aspects, J. Magnes. Alloys, 2020, 8(4), p 999–1015.CrossRef V.S. Yadav, M.R. Sankar, and L.M. Pandey, Coating of Bioactive Glass on Magnesium Alloys to Improve its Degradation Behavior: Interfacial Aspects, J. Magnes. Alloys, 2020, 8(4), p 999–1015.CrossRef
Metadata
Title
Effect of Zinc and Bio-Glass Addition on Mechanical Properties and Corrosion Behavior of Magnesium-Based Composites for Orthopedic Application: A Preliminary Study
Authors
K. V. Sandeep Moudgalya
Prithivirajan Sekar
H. Suresh Hebbar
M. R. Rahman
Publication date
15-03-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 9/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06774-9

Other articles of this Issue 9/2022

Journal of Materials Engineering and Performance 9/2022 Go to the issue

Premium Partners