Skip to main content
Top
Published in: Foundations of Computational Mathematics 4/2014

01-08-2014

Effective Approximation for the Semiclassical Schrödinger Equation

Authors: Philipp Bader, Arieh Iserles, Karolina Kropielnicka, Pranav Singh

Published in: Foundations of Computational Mathematics | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The computation of the semiclassical Schrödinger equation presents major challenges because of the presence of a small parameter. Assuming periodic boundary conditions, the standard approach consists of semi-discretisation with a spectral method, followed by an exponential splitting. In this paper we sketch an alternative strategy. Our analysis commences with the investigation of the free Lie algebra generated by differentiation and by multiplication with the interaction potential: it turns out that this algebra possesses a structure which renders it amenable to a very effective form of asymptotic splitting: exponential splitting where consecutive terms are scaled by increasing powers of the small parameter. This leads to methods which attain high spatial and temporal accuracy and whose cost scales as \({\mathcal {O}}\!\left( M\log M\right) \), where \(M\) is the number of degrees of freedom in the discretisation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Unless a non-existing term is subtracted and thus newly introduced instead of removed.
 
2
Using a Fourier basis the cost is \({\mathcal {O}}\!\left( M\log M\right) \).
 
3
As before, a tilde denotes a discretisation.
 
4
All powers of \(\tau \) are odd because of the palindromy of the symmetric BCH formula. Since \(\tau ={\mathrm {i}}\Delta t\), this means that they always contribute a multiple of \(\pm {\mathrm {i}}\).
 
Literature
1.
go back to reference Blanes, S., Casas, F. & Murua, A. (2006), Symplectic splitting operator methods tailored for the time-dependent Schrödinger equation, J. Chem. Phys. 124, 234–105. Blanes, S., Casas, F. & Murua, A. (2006), Symplectic splitting operator methods tailored for the time-dependent Schrödinger equation, J. Chem. Phys. 124, 234–105.
2.
go back to reference Bungartz, H.-J. & Griebel, M. (2004), Sparse grids, Acta Numer. 13, 147–269. Bungartz, H.-J. & Griebel, M. (2004), Sparse grids, Acta Numer. 13, 147–269.
3.
go back to reference Casas, F. & Murua, A. (2009), An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications, J. Math. Phys. 50, (electronic). Casas, F. & Murua, A. (2009), An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications, J. Math. Phys. 50, (electronic).
4.
go back to reference Faou, E. (2012), Geometric Numerical Integration and Schrödinger Equations, Zurich Lectures in Advanced Mathematics, The European Mathematical Society, Zürich. Faou, E. (2012), Geometric Numerical Integration and Schrödinger Equations, Zurich Lectures in Advanced Mathematics, The European Mathematical Society, Zürich.
5.
go back to reference Gallopoulos, E. & Saad, Y. (1992), Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput. 13, 1236–1264. Gallopoulos, E. & Saad, Y. (1992), Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput. 13, 1236–1264.
6.
go back to reference Golub, G. H. & Van Loan, C. F. (1996), Matrix Computations, 3rd edn, Johns Hopkins University Press, Baltimore. Golub, G. H. & Van Loan, C. F. (1996), Matrix Computations, 3rd edn, Johns Hopkins University Press, Baltimore.
7.
go back to reference Griffiths, D. J. (2004), Introduction to Quantum Mechanics, 2nd edn, Prentice Hall, Upper Saddle River, NJ. Griffiths, D. J. (2004), Introduction to Quantum Mechanics, 2nd edn, Prentice Hall, Upper Saddle River, NJ.
8.
go back to reference Hairer, E., Lubich, C. & Wanner, G. (2006), Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn, Springer, Berlin. Hairer, E., Lubich, C. & Wanner, G. (2006), Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn, Springer, Berlin.
9.
go back to reference Hesthaven, J. S., Gottlieb, S. & Gottlieb, D. (2007), Spectral Methods for Time-Dependent Problems, Cambridge University Press, Cambridge. Hesthaven, J. S., Gottlieb, S. & Gottlieb, D. (2007), Spectral Methods for Time-Dependent Problems, Cambridge University Press, Cambridge.
10.
go back to reference Hochbruck, M. & Lubich, C. (1997), On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34, 1911–1925. Hochbruck, M. & Lubich, C. (1997), On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34, 1911–1925.
11.
go back to reference Iserles, A. (2008), A First Course in the Numerical Analysis of Differential Equations, 2nd edn, Cambridge University Press, Cambridge. Iserles, A. (2008), A First Course in the Numerical Analysis of Differential Equations, 2nd edn, Cambridge University Press, Cambridge.
12.
go back to reference Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P. & Zanna, A. (2000), Lie-group methods, Acta Numer. 9, 215–365. Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P. & Zanna, A. (2000), Lie-group methods, Acta Numer. 9, 215–365.
13.
go back to reference Jin, S., Markowich, P. & Sparber, C. (2011), Mathematical and computational methods for semiclassical Schrödinger equations, Acta Numer. 20, 121–210. Jin, S., Markowich, P. & Sparber, C. (2011), Mathematical and computational methods for semiclassical Schrödinger equations, Acta Numer. 20, 121–210.
14.
go back to reference Lubich, C. (2008), From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, The European Mathematical Society , Zürich. Lubich, C. (2008), From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, The European Mathematical Society , Zürich.
15.
go back to reference McLachlan, R. I. & Quispel, G. R. W. (2002), Splitting methods, Acta Numer. 11, 341–434. McLachlan, R. I. & Quispel, G. R. W. (2002), Splitting methods, Acta Numer. 11, 341–434.
16.
go back to reference McLachlan, R. I., Munthe-Kaas, H. Z., Quispel, G. R. W. & Zanna, A. (2008), Explicit volume-preserving splitting methods for linear and quadratic divergence-free vector fields, Found. Comput. Math. 8, 335–3554. McLachlan, R. I., Munthe-Kaas, H. Z., Quispel, G. R. W. & Zanna, A. (2008), Explicit volume-preserving splitting methods for linear and quadratic divergence-free vector fields, Found. Comput. Math. 8, 335–3554.
17.
go back to reference Oteo, J. A. (1991), The Baker–Campbell–Hausdorff formula and nested commutator identities, J. Math. Phys. 32, 419–424. Oteo, J. A. (1991), The Baker–Campbell–Hausdorff formula and nested commutator identities, J. Math. Phys. 32, 419–424.
18.
go back to reference Reutenauer, C. (1993), Free Lie Algebras, London Mathematical Society Monographs 7, Oxford University Press, Oxford. Reutenauer, C. (1993), Free Lie Algebras, London Mathematical Society Monographs 7, Oxford University Press, Oxford.
19.
go back to reference Tal Ezer, H. & Kosloff, R. (1984), An accurate and efficient scheme for propagating the time dependent Schrödinger equation, J. Chem. Phys. 81, 3967–3976. Tal Ezer, H. & Kosloff, R. (1984), An accurate and efficient scheme for propagating the time dependent Schrödinger equation, J. Chem. Phys. 81, 3967–3976.
20.
go back to reference Yošida, H. (1990), Construction of higher order symplectic integrators, Phys. Lett. 150, 262–268. Yošida, H. (1990), Construction of higher order symplectic integrators, Phys. Lett. 150, 262–268.
Metadata
Title
Effective Approximation for the Semiclassical Schrödinger Equation
Authors
Philipp Bader
Arieh Iserles
Karolina Kropielnicka
Pranav Singh
Publication date
01-08-2014
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 4/2014
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-013-9182-8

Other articles of this Issue 4/2014

Foundations of Computational Mathematics 4/2014 Go to the issue

Premium Partner