Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2022

18-04-2022 | Technical Article

Effects of Addition of Titanium on Microstructures and Properties of Laser Butt Welded Joints of Mo–30W Alloy

Authors: Pei-Xin Cheng, Lin-Jie Zhang, Jie Ning, Suck-Joo Na, Yong-qing Pang

Published in: Journal of Materials Engineering and Performance | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The fusion welding of Mo–30W alloy, a kind of brittle and refractory materials, is still challenging. This study investigated effects of addition of titanium (Ti) on microstructures and properties of laser butt welded joints of Mo–30W alloy. The microstructure, phase distribution and mechanical performance of the welded joint with and without Ti were studied by optical microscope, scanning electron microscope, energy-dispersive spectrometer, electron backscattering diffraction, microhardness tests and tensile tests. The tensile strength of Mo–30W laser welded joint was increased from 108.56 to 409.57 MPa by adding Ti element, reached 58.34% that of base metal. MoO2 phase and WO2 phase precipitated at the grain boundary of FZ region of Mo–30W alloy laser butt welded joints without Ti, which significantly reduced the grain boundary strength, resulting in low tensile strength. After the addition of Ti, TiO2 phase with low Gibbs free energy was formed in GBs (grain boundaries), which reduced the number of MoO2 phase and WO2 phase harmful to the GBs strength, therefore, the tendency of grain boundary embrittlement was reduced. The research results can provide reference for laser welding of brittle and refractory metals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.L. Brown and C.P. Kempter, Elastic Properties of Thoriated W-Mo and W-Mo-Re Alloys, J. Less-Common Met., 1967, 12(2), p 166–168.CrossRef H.L. Brown and C.P. Kempter, Elastic Properties of Thoriated W-Mo and W-Mo-Re Alloys, J. Less-Common Met., 1967, 12(2), p 166–168.CrossRef
2.
go back to reference B. Paul, D. Jain, S.P. Chakraborty, I.G. Sharma, and A.K. Suri, Sintering Kinetics Study of Mechanically Alloyed Nanocrystalline Mo–30wt.% W, Thermochim Acta, 2011, 512, p 134–141.CrossRef B. Paul, D. Jain, S.P. Chakraborty, I.G. Sharma, and A.K. Suri, Sintering Kinetics Study of Mechanically Alloyed Nanocrystalline Mo–30wt.% W, Thermochim Acta, 2011, 512, p 134–141.CrossRef
3.
go back to reference S.P. Chakraborty, S. Banerjee, G. Sanyal, V.S. Bhave, B. Paul, I.G. Sharma, and A.K. Suri, Studies on the Synthesis of a Mo–30wt% W Alloy by Non-conventional Approaches, J. Alloys Compd., 2010, 501, p 211–217.CrossRef S.P. Chakraborty, S. Banerjee, G. Sanyal, V.S. Bhave, B. Paul, I.G. Sharma, and A.K. Suri, Studies on the Synthesis of a Mo–30wt% W Alloy by Non-conventional Approaches, J. Alloys Compd., 2010, 501, p 211–217.CrossRef
4.
go back to reference S. Antusch, J. Reiser, J. Hoffmann, and A. Onea, Refractory Materials for Energy Applications, Energy Technol., 2017, 5, p 1064.CrossRef S. Antusch, J. Reiser, J. Hoffmann, and A. Onea, Refractory Materials for Energy Applications, Energy Technol., 2017, 5, p 1064.CrossRef
5.
go back to reference T. Wang, N. Li, Y. Zhang, S. Jiang, B. Zhang, Y. Wang, and J. Feng, Influence of Welding Speed on Microstructures and Mechanical Properties of Vacuum Electron Beam Welded TZM Alloy Joints, Vacuum, 2017, 149, p 29–35.CrossRef T. Wang, N. Li, Y. Zhang, S. Jiang, B. Zhang, Y. Wang, and J. Feng, Influence of Welding Speed on Microstructures and Mechanical Properties of Vacuum Electron Beam Welded TZM Alloy Joints, Vacuum, 2017, 149, p 29–35.CrossRef
6.
go back to reference R. Kishore and A. Kumar, Effect of Carbon on the Ductilisation of Electron-Beam Welds in Molybdenum, J. Nucl. Mater., 1981, 101(1–2), p 16–27.CrossRef R. Kishore and A. Kumar, Effect of Carbon on the Ductilisation of Electron-Beam Welds in Molybdenum, J. Nucl. Mater., 1981, 101(1–2), p 16–27.CrossRef
7.
go back to reference M. Kolarikova, L. Kolarik, and P. Vondrous. Welding of Thin Molybdenum Sheets by EBW and GTAW, Annals of Daaam & Proceedings. 2012 M. Kolarikova, L. Kolarik, and P. Vondrous. Welding of Thin Molybdenum Sheets by EBW and GTAW, Annals of Daaam & Proceedings. 2012
8.
go back to reference M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, and J.Y. Pei, Effect of Heat Input on Porosity Defects in a Fiber Laser Welded Socket-Joint Made of Powder Metallurgy Molybdenum Alloy, Materials, 2019, 12(9), p 1433.CrossRef M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, and J.Y. Pei, Effect of Heat Input on Porosity Defects in a Fiber Laser Welded Socket-Joint Made of Powder Metallurgy Molybdenum Alloy, Materials, 2019, 12(9), p 1433.CrossRef
9.
go back to reference M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, and J.Y. Pei, Microstructure and Mechanical Properties of a Fiber Welded Socket-Joint made of Powder Metallurgy Molybdenum Alloy, Metals, 2019, 9(6), p 640.CrossRef M.X. Xie, Y.X. Li, X.T. Shang, X.W. Wang, and J.Y. Pei, Microstructure and Mechanical Properties of a Fiber Welded Socket-Joint made of Powder Metallurgy Molybdenum Alloy, Metals, 2019, 9(6), p 640.CrossRef
10.
go back to reference M.X. Xie, X.T. Shang, Y.X. Li, Z.H. Zhang, M.H. Zhu, and J.T. Xiong, Rotary Friction Welding of Molybdenum without Upset Forging, Materials, 2020, 13(8), p 1957.CrossRef M.X. Xie, X.T. Shang, Y.X. Li, Z.H. Zhang, M.H. Zhu, and J.T. Xiong, Rotary Friction Welding of Molybdenum without Upset Forging, Materials, 2020, 13(8), p 1957.CrossRef
11.
go back to reference P. Liu, K.Y. Feng, and G.M. Zhang, A Novel Study on Laser Lap Welding of Refractory Alloy 50Mo–50Re of Small-Scale Thin Sheet, Vacuum, 2017, 136, p 10–13.CrossRef P. Liu, K.Y. Feng, and G.M. Zhang, A Novel Study on Laser Lap Welding of Refractory Alloy 50Mo–50Re of Small-Scale Thin Sheet, Vacuum, 2017, 136, p 10–13.CrossRef
12.
go back to reference L.L. Zhang, L.J. Zhang, J. Long, X. Sun, J.X. Zhang, and S.J. Na, Enhanced Mechanical Performance of Fusion Zone in Laser Beam Welding Joint of Molybdenum Alloy Due to Solid Carburizing, Mater. Des., 2019, 181, p 107957.CrossRef L.L. Zhang, L.J. Zhang, J. Long, X. Sun, J.X. Zhang, and S.J. Na, Enhanced Mechanical Performance of Fusion Zone in Laser Beam Welding Joint of Molybdenum Alloy Due to Solid Carburizing, Mater. Des., 2019, 181, p 107957.CrossRef
13.
go back to reference D.P. Kramer, J.R. Mcdougal, B.A. Booher, J.D. Ruhkamp, and J.J. Kwiatkowski. Electron beam and Nd-YAG laser welding of niobium-1% zirconium and molybdenum-44.5% rhenium thin select material, Energy Conversion Engineering Conference & Exhibit IEEE 2013 D.P. Kramer, J.R. Mcdougal, B.A. Booher, J.D. Ruhkamp, and J.J. Kwiatkowski. Electron beam and Nd-YAG laser welding of niobium-1% zirconium and molybdenum-44.5% rhenium thin select material, Energy Conversion Engineering Conference & Exhibit IEEE 2013
14.
go back to reference S. Majumdar, G.B. Kale, and I.G. Sharma, A Study on Preparation of Mo–30W alloy by Aluminothermic Co-Reduction of Mixed Oxides, J. Alloys Compd., 2005, 394(1–2), p 168–175.CrossRef S. Majumdar, G.B. Kale, and I.G. Sharma, A Study on Preparation of Mo–30W alloy by Aluminothermic Co-Reduction of Mixed Oxides, J. Alloys Compd., 2005, 394(1–2), p 168–175.CrossRef
15.
go back to reference C.Y. Wang, Y.K. Teng, and D. Dong, Study on Recrystallization Behavior of Mo-30W Molybdenum Alloy, Powder Metall. Technol., 2018, 36(6), p 418–422. C.Y. Wang, Y.K. Teng, and D. Dong, Study on Recrystallization Behavior of Mo-30W Molybdenum Alloy, Powder Metall. Technol., 2018, 36(6), p 418–422.
16.
go back to reference S. Majumdar, I.G. Sharma, and A.K. Suri, Development of Oxidation Resistant Coatings on Mo–30W Alloy, Int. J. Refract. Met. Hard Mater., 2008, 26(6), p 549–554.CrossRef S. Majumdar, I.G. Sharma, and A.K. Suri, Development of Oxidation Resistant Coatings on Mo–30W Alloy, Int. J. Refract. Met. Hard Mater., 2008, 26(6), p 549–554.CrossRef
17.
go back to reference M.K. Miller, E.A. Kenik, M.S. Mousa, K.F. Russell, and A.J. Bryhan, Improvement in the Ductility of Molybdenum Alloys due to Grain Boundary Segregation, Scr. Mater., 2002, 46(4), p 299–303.CrossRef M.K. Miller, E.A. Kenik, M.S. Mousa, K.F. Russell, and A.J. Bryhan, Improvement in the Ductility of Molybdenum Alloys due to Grain Boundary Segregation, Scr. Mater., 2002, 46(4), p 299–303.CrossRef
18.
go back to reference K. Leitner, D. Lutz, W. Knabl, M. Eidenberger-Schober, K. Huber, A. Lorich, H. Clemens, and V. Maier-Kiener, Grain Boundary Segregation Engineering in As-Sintered Molybdenum for Improved Ductility, Scr. Mater., 2018, 156, p 60–63.CrossRef K. Leitner, D. Lutz, W. Knabl, M. Eidenberger-Schober, K. Huber, A. Lorich, H. Clemens, and V. Maier-Kiener, Grain Boundary Segregation Engineering in As-Sintered Molybdenum for Improved Ductility, Scr. Mater., 2018, 156, p 60–63.CrossRef
19.
go back to reference L.J. Zhang, J.Y. Pei, L.L. Zhang, J. Long, J.X. Zhang, and S.J. Na, Laser Seal Welding of End Plug to Thin-Walled Nanostructured High-Strength Molybdenum Alloy Cladding with a Zirconium Interlayer, J. Mater. Process. Technol., 2019, 267, p 338–347.CrossRef L.J. Zhang, J.Y. Pei, L.L. Zhang, J. Long, J.X. Zhang, and S.J. Na, Laser Seal Welding of End Plug to Thin-Walled Nanostructured High-Strength Molybdenum Alloy Cladding with a Zirconium Interlayer, J. Mater. Process. Technol., 2019, 267, p 338–347.CrossRef
20.
go back to reference P.Y. Park, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The Corrosion Behavior of Sputter-Deposited Amorphous Mo-Zr Alloys in 12 M HCl, Corros. Sci., 1994, 36(8), p 1395–1410.CrossRef P.Y. Park, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The Corrosion Behavior of Sputter-Deposited Amorphous Mo-Zr Alloys in 12 M HCl, Corros. Sci., 1994, 36(8), p 1395–1410.CrossRef
21.
go back to reference M. Nagae, Y. Takemoto, T. Yoshio, J. Takada, and Y. Hiraoka, Preparation of Structurally Controlled Dilute Molybdenum–Titanium Alloys Through a Novel Multi-Step Internal Nitriding Technique and Their Mechanical Properties, Mater. Sci. Eng. A, 2005, 406, p 50–56.CrossRef M. Nagae, Y. Takemoto, T. Yoshio, J. Takada, and Y. Hiraoka, Preparation of Structurally Controlled Dilute Molybdenum–Titanium Alloys Through a Novel Multi-Step Internal Nitriding Technique and Their Mechanical Properties, Mater. Sci. Eng. A, 2005, 406, p 50–56.CrossRef
22.
go back to reference Q. Shen, L.M. Zhang, H.P. Xiong, J.S. Hua, and H. Tan, Fabrication of W-Mo-Ti System Flier-Plate with Graded Impedance for Generating Quasi-Isentropic Compression, Chin. Sci. Bull., 2000, 45(15), p 1421–1424.CrossRef Q. Shen, L.M. Zhang, H.P. Xiong, J.S. Hua, and H. Tan, Fabrication of W-Mo-Ti System Flier-Plate with Graded Impedance for Generating Quasi-Isentropic Compression, Chin. Sci. Bull., 2000, 45(15), p 1421–1424.CrossRef
23.
go back to reference J.L. Fan, M.Y. Lu, H.C. Cheng, J.M. Tian, and B.Y. Huang, Effect of Alloying Elements Ti, Zr on the Property and Microstructure of Molybdenum, Int. J. Refract. Met. Hard Mater., 2009, 27(1), p 78–82.CrossRef J.L. Fan, M.Y. Lu, H.C. Cheng, J.M. Tian, and B.Y. Huang, Effect of Alloying Elements Ti, Zr on the Property and Microstructure of Molybdenum, Int. J. Refract. Met. Hard Mater., 2009, 27(1), p 78–82.CrossRef
24.
go back to reference D.W. Jones and A.D. McQuillan, Magnetic Susceptibility and Hydrogen Affinity of B.C.C. Alloys of Nb-Mo Nb-Re and Mo-Re, J. Phys. Chem. Solids, 1962, 23(10), p 1441–1447.CrossRef D.W. Jones and A.D. McQuillan, Magnetic Susceptibility and Hydrogen Affinity of B.C.C. Alloys of Nb-Mo Nb-Re and Mo-Re, J. Phys. Chem. Solids, 1962, 23(10), p 1441–1447.CrossRef
25.
go back to reference H. Yutaka, Effect of Rhenium and Carbon Additions on Low-Temperature Fracture Behavior of Molybdenum, J. Jpn. Inst. Met., 1992, 56(2), p 161–167.CrossRef H. Yutaka, Effect of Rhenium and Carbon Additions on Low-Temperature Fracture Behavior of Molybdenum, J. Jpn. Inst. Met., 1992, 56(2), p 161–167.CrossRef
26.
go back to reference G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12(4), p 344–350.CrossRef G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma, Nanostructured High-Strength Molybdenum Alloys with Unprecedented Tensile Ductility, Nat. Mater., 2013, 12(4), p 344–350.CrossRef
27.
go back to reference L.L. Zhang, L.J. Zhang, J. Long, J. Ning, J.X. Zhang, and S.J. Na, Effects of Titanium on Grain Boundary Strength in Molybdenum Laser Weld Bead and Formation and Strengthening Mechanisms of Brazing Layer, Mater. Des., 2019, 169, p 107681.CrossRef L.L. Zhang, L.J. Zhang, J. Long, J. Ning, J.X. Zhang, and S.J. Na, Effects of Titanium on Grain Boundary Strength in Molybdenum Laser Weld Bead and Formation and Strengthening Mechanisms of Brazing Layer, Mater. Des., 2019, 169, p 107681.CrossRef
28.
go back to reference Z. Hu, Y. Zhao, K. Guan, Z. Wang, and Z. Ma, Pure Tungsten and Oxide Dispersion Strengthened Tungsten Manufactured by Selective Laser Melting: Microstructure and Cracking Mechanism, Addit. Manuf., 2020, 36(6), p 101579. Z. Hu, Y. Zhao, K. Guan, Z. Wang, and Z. Ma, Pure Tungsten and Oxide Dispersion Strengthened Tungsten Manufactured by Selective Laser Melting: Microstructure and Cracking Mechanism, Addit. Manuf., 2020, 36(6), p 101579.
29.
go back to reference L.J. Zhang, C.H. Wang, Y.B. Zhang, Q. Guo, R.Y. Ma, J.X. Zhang, and S.J. Na, The Mechanical Properties and Interface Bonding Mechanism of Molybdenum/SUS304L by Laser Beam Welding with Nickel Interlayer, Mater. Des., 2019, 182, p 108002.CrossRef L.J. Zhang, C.H. Wang, Y.B. Zhang, Q. Guo, R.Y. Ma, J.X. Zhang, and S.J. Na, The Mechanical Properties and Interface Bonding Mechanism of Molybdenum/SUS304L by Laser Beam Welding with Nickel Interlayer, Mater. Des., 2019, 182, p 108002.CrossRef
30.
go back to reference C.G. Zhang, J.L. Fan, and H.C. Cheng, Effects of W Content by Mass on the Microstructure and Mechanical Properties of Mo–W Alloy, Powder Metall. Technol., 2020, 38, p 18–24. C.G. Zhang, J.L. Fan, and H.C. Cheng, Effects of W Content by Mass on the Microstructure and Mechanical Properties of Mo–W Alloy, Powder Metall. Technol., 2020, 38, p 18–24.
31.
go back to reference B. Tabernig and N. Reheis, Joining of Molybdenum and its Application, Int. J. Refract. Met. Hard Mater, 2010, 2, p 728–733.CrossRef B. Tabernig and N. Reheis, Joining of Molybdenum and its Application, Int. J. Refract. Met. Hard Mater, 2010, 2, p 728–733.CrossRef
32.
go back to reference A. Chatterjee, S. Kumar, R. Tewari, and G.K. Dey, Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques, Metall. Mater. Trans. A, 2015, 47, p 1143–1152.CrossRef A. Chatterjee, S. Kumar, R. Tewari, and G.K. Dey, Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques, Metall. Mater. Trans. A, 2015, 47, p 1143–1152.CrossRef
33.
go back to reference D. Bachurina, A. Suchkov, J. Gurova, M. Savelyev, and O. Sevryukov, Joining Tungsten with Steel for DEMO: Simultaneous Brazing by Cu-Ti Amorphous Foils and Heat Treatment, Fusion Eng. Des., 2021, 162, p 112099.CrossRef D. Bachurina, A. Suchkov, J. Gurova, M. Savelyev, and O. Sevryukov, Joining Tungsten with Steel for DEMO: Simultaneous Brazing by Cu-Ti Amorphous Foils and Heat Treatment, Fusion Eng. Des., 2021, 162, p 112099.CrossRef
34.
go back to reference B. Hu, C.L. Qiu, S.L. Cui, P.S. Wang, J.Q. Zhou, W.S. Xu, F.F. Min, and J.R. Zhao, CALPHAD-type Thermodynamic Description of Phase Equilibria in the Ti-W-M (M = Zr, Mo, Nb) Ternary Systems, J. Chem. Thermodyn., 2019, 131, p 25–32.CrossRef B. Hu, C.L. Qiu, S.L. Cui, P.S. Wang, J.Q. Zhou, W.S. Xu, F.F. Min, and J.R. Zhao, CALPHAD-type Thermodynamic Description of Phase Equilibria in the Ti-W-M (M = Zr, Mo, Nb) Ternary Systems, J. Chem. Thermodyn., 2019, 131, p 25–32.CrossRef
35.
go back to reference T. Wang, Y. Zhang, S. Jiang, X. Li, and J. Feng, Stress Relief and Purification Mechanisms for Grain Boundaries of Electron Beam Welded TZM Alloy Joint with Zirconium Addition, J. Mater. Process. Technol., 2018, 251, p 168–174.CrossRef T. Wang, Y. Zhang, S. Jiang, X. Li, and J. Feng, Stress Relief and Purification Mechanisms for Grain Boundaries of Electron Beam Welded TZM Alloy Joint with Zirconium Addition, J. Mater. Process. Technol., 2018, 251, p 168–174.CrossRef
36.
go back to reference C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage Thermochemical Software and Databases, Calphad, 2002, 26, p 189–228.CrossRef C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen, FactSage Thermochemical Software and Databases, Calphad, 2002, 26, p 189–228.CrossRef
37.
go back to reference E. Smith, The Formation of a Cleavage Crack in a Crystalline solid—I, Acta Mater., 1996, 14(8), p 985–989.CrossRef E. Smith, The Formation of a Cleavage Crack in a Crystalline solid—I, Acta Mater., 1996, 14(8), p 985–989.CrossRef
38.
go back to reference E. Smith, The Formation of a Cleavage Crack in a Crystalline Solid—II, Acta Mater., 1996, 14(8), p 991–996.CrossRef E. Smith, The Formation of a Cleavage Crack in a Crystalline Solid—II, Acta Mater., 1996, 14(8), p 991–996.CrossRef
39.
go back to reference W.S. Tsurekawa, The Control of Brittleness and Development of Desirable Mechanical Properties in Polycrystalline Systems by Grain Boundary Engineering, Mater. Des., 1999, 47, p 15–16. W.S. Tsurekawa, The Control of Brittleness and Development of Desirable Mechanical Properties in Polycrystalline Systems by Grain Boundary Engineering, Mater. Des., 1999, 47, p 15–16.
40.
go back to reference K. Leitner, N. Babinsky, P.J. Felfer, D. Holec, J. Cairney, W. Knabl, A. Lorich, H. Clemens, and S. Primig, On Grain Boundary Segregation in Molybdenum Materials, Mater. Des., 2017, 135, p 204–212.CrossRef K. Leitner, N. Babinsky, P.J. Felfer, D. Holec, J. Cairney, W. Knabl, A. Lorich, H. Clemens, and S. Primig, On Grain Boundary Segregation in Molybdenum Materials, Mater. Des., 2017, 135, p 204–212.CrossRef
Metadata
Title
Effects of Addition of Titanium on Microstructures and Properties of Laser Butt Welded Joints of Mo–30W Alloy
Authors
Pei-Xin Cheng
Lin-Jie Zhang
Jie Ning
Suck-Joo Na
Yong-qing Pang
Publication date
18-04-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06863-9

Other articles of this Issue 10/2022

Journal of Materials Engineering and Performance 10/2022 Go to the issue

Premium Partners