Skip to main content
Top
Published in: Fire Technology 1/2021

13-05-2020

Effects of Ambient Parameters and Sample Width on Upward Flame Spread over Thermally Thin Solids

Authors: Luyao Zhao, Jun Fang, Shangqing Tao, Jingwu Wang, Yongming Zhang

Published in: Fire Technology | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Upward flame spread is the most rapid and hazardous of the different modes of flame spread. Moreover, studies on the effects of ambient parameters on flame spread are very important for fire safety on spacecraft systems. Therefore, the effects of pressure (0 kPa to 70 kPa), oxygen mole fraction (0.30 to 0.90) and sample width (0.3 cm to 2 cm) on upward flame spread over thin papers were studied. A flame break-off phenomenon over papers was firstly observed, which occurred more likely at high oxygen and high pressure conditions. Upward flame spread reached a steady state by varying the ambient parameters and using narrow samples. The smaller sample width narrowed the flammability limits. Differences in upward and downward flame spread were discussed. We found that a power law relationship between flame spread rate and pressure remained valid near the extinction limit for upward spread, while the power law broke down in the extinction region for downward spread. The controlling mechanism of upward spread was revealed by a pressure modeling method showing that the upward flame spread rate was proportional to the Grashof number raised to an exponent of 0.257. For upward flame spread over narrow solids, the gas phase kinetics and radiation effects are less important compared to the heat convection in the flame spread process, which is quite different from the downward spread. This study contributes to the fire safety of space vehicles and enhances the understanding of the controlling mechanism of flame spread.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Williams F (1977) Mechanisms of fire spread. In: Symposium (international) on combustion, vol 1. Elsevier, pp 1281–1294 Williams F (1977) Mechanisms of fire spread. In: Symposium (international) on combustion, vol 1. Elsevier, pp 1281–1294
3.
go back to reference Fernandez-Pello AC, Williams F (1977) A theory of laminar flame spread over flat surfaces of solid combustibles. Combust Flame 28:251–277CrossRef Fernandez-Pello AC, Williams F (1977) A theory of laminar flame spread over flat surfaces of solid combustibles. Combust Flame 28:251–277CrossRef
4.
go back to reference Markstein G, De Ris J (1973) Upward fire spread over textiles. In: Symposium (international) on combustion, vol 1. Elsevier, pp 1085–1097 Markstein G, De Ris J (1973) Upward fire spread over textiles. In: Symposium (international) on combustion, vol 1. Elsevier, pp 1085–1097
5.
go back to reference Quintiere J, Harkleroad M, Hasemi Y (1986) Wall flames and implications for upward flame spread. Combust Sci Technol 48(3–4):191–222CrossRef Quintiere J, Harkleroad M, Hasemi Y (1986) Wall flames and implications for upward flame spread. Combust Sci Technol 48(3–4):191–222CrossRef
6.
go back to reference Fernandez-Pello AC, Hirano T (1983) Controlling mechanisms of flame spread. Combust Sci Technol 32(1–4):1–31CrossRef Fernandez-Pello AC, Hirano T (1983) Controlling mechanisms of flame spread. Combust Sci Technol 32(1–4):1–31CrossRef
11.
go back to reference Tsai K-C (2011) Influence of sidewalls on width effects of upward flame spread. Fire Saf J 46(5):294–304CrossRef Tsai K-C (2011) Influence of sidewalls on width effects of upward flame spread. Fire Saf J 46(5):294–304CrossRef
13.
go back to reference Honda LK, Ronney PD (2000) Mechanisms of concurrent-flow flame spread over solid fuel beds. Proc Combust Inst 28:2793–2801CrossRef Honda LK, Ronney PD (2000) Mechanisms of concurrent-flow flame spread over solid fuel beds. Proc Combust Inst 28:2793–2801CrossRef
15.
go back to reference Jiang C-B, Tien JS, Shih H-Y (1996) Model calculation of steady upward flame spread over a thin solid in reduced gravity. In: Symposium (international) on combustion, vol 1. Elsevier, pp 1353–1360 Jiang C-B, Tien JS, Shih H-Y (1996) Model calculation of steady upward flame spread over a thin solid in reduced gravity. In: Symposium (international) on combustion, vol 1. Elsevier, pp 1353–1360
16.
go back to reference Shih H-Y (2009) Computed flammability limits and spreading rates of upward flame spread over a thin solid in low-speed buoyant flows. Combust Sci Technol 181(2):379–395CrossRef Shih H-Y (2009) Computed flammability limits and spreading rates of upward flame spread over a thin solid in low-speed buoyant flows. Combust Sci Technol 181(2):379–395CrossRef
18.
go back to reference Chu L, Chen CH, T’ien JS (1981) ASME paper No 81-WA/HT-42 Chu L, Chen CH, T’ien JS (1981) ASME paper No 81-WA/HT-42
22.
go back to reference Kleinhenz J, Yuan Z-G (2011) An experimental study of upward burning over long solid fuels: facility development and comparison. NASA Glenn Research Center, Cleveland Kleinhenz J, Yuan Z-G (2011) An experimental study of upward burning over long solid fuels: facility development and comparison. NASA Glenn Research Center, Cleveland
26.
go back to reference McAlevy RF, Magee RS (1969) The mechanism of flame spreading over the surface of igniting condensed-phase materials. In: Symposium (international) on combustion, vol 1. Elsevier, pp 215–227 McAlevy RF, Magee RS (1969) The mechanism of flame spreading over the surface of igniting condensed-phase materials. In: Symposium (international) on combustion, vol 1. Elsevier, pp 215–227
27.
go back to reference Frey AE, T’ien JS (1976) Near-limit flame spread over paper samples. Combust Flame 26:257–267CrossRef Frey AE, T’ien JS (1976) Near-limit flame spread over paper samples. Combust Flame 26:257–267CrossRef
28.
go back to reference De Ris J, Kanury AM, Yuen M (1973) Pressure modeling of fires. In: Symposium (international) on combustion, vol 1. Elsevier, pp 1033–1044 De Ris J, Kanury AM, Yuen M (1973) Pressure modeling of fires. In: Symposium (international) on combustion, vol 1. Elsevier, pp 1033–1044
29.
go back to reference Alpert R (1977) Pressure modeling of transient crib fires. Combust Sci Technol 15(1–2):11–20CrossRef Alpert R (1977) Pressure modeling of transient crib fires. Combust Sci Technol 15(1–2):11–20CrossRef
30.
go back to reference Altenkirch R, Eichhorn R, Shang P (1980) Buoyancy effects on flames spreading down thermally thin fuels. Combust Flame 37:71–83CrossRef Altenkirch R, Eichhorn R, Shang P (1980) Buoyancy effects on flames spreading down thermally thin fuels. Combust Flame 37:71–83CrossRef
31.
32.
go back to reference Gebhart B, Jaluria Y, Mahajan RL, Sammakia B (1988) Buoyancy-induced flows and transport. Springer, BerlinMATH Gebhart B, Jaluria Y, Mahajan RL, Sammakia B (1988) Buoyancy-induced flows and transport. Springer, BerlinMATH
33.
go back to reference Bergman TL, Lavin AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, Hoboken Bergman TL, Lavin AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley, Hoboken
34.
go back to reference Delichatsios M (1986) Exact solution for the rate of creeping flame spread over thermally thin materials. Combust Sci Technol 44(5–6):257–267CrossRef Delichatsios M (1986) Exact solution for the rate of creeping flame spread over thermally thin materials. Combust Sci Technol 44(5–6):257–267CrossRef
Metadata
Title
Effects of Ambient Parameters and Sample Width on Upward Flame Spread over Thermally Thin Solids
Authors
Luyao Zhao
Jun Fang
Shangqing Tao
Jingwu Wang
Yongming Zhang
Publication date
13-05-2020
Publisher
Springer US
Published in
Fire Technology / Issue 1/2021
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-020-00987-x

Other articles of this Issue 1/2021

Fire Technology 1/2021 Go to the issue