Skip to main content
Top
Published in: Journal of Polymer Research 6/2019

01-06-2019 | ORIGINAL PAPER

Effects of amylose content on starch-chitosan composite film and its application as a wound dressing

Authors: Wen-Ching Wu, Po-Yuan Hsiao, Yi-Cheng Huang

Published in: Journal of Polymer Research | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study analyzed the amylose content of starches and used them to prepare starch–chitosan composite films to assess their potential as wound dressings. Amylose content was 35.3% in potato starch, 30.5% in corn starch, and 9.7% in glutinous rice starch. The glutinous rice starch–chitosan composite (GC) film, which had a lower amylose content, had a coarser surface and exhibited a higher swelling rate, tensile strength, and elongation at break. In in vitro experiments by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicated that GC film had greater biocompatibility with mouse fibroblast L929 cells and human keratinocyte HaCaT cells. The results of the enzyme-linked immunosorbent assay indicated that GC film was more capable of alleviating inflammation than other films by preventing RAW264.7 macrophage from secreting cytokines (TNF-α and IL-6). Additionally, it possessed an excellent coagulation rate. Briefly, the GC film with a lower amylose content is a suitable material for wound dressing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Castro JV, Dumas C, Chiou H, Fitzgerald MA, Gilbert RG (2005) Mechanistic information from analysis of molecular weight distributions of starch. Biomacromolecules 6:2248–2259CrossRef Castro JV, Dumas C, Chiou H, Fitzgerald MA, Gilbert RG (2005) Mechanistic information from analysis of molecular weight distributions of starch. Biomacromolecules 6:2248–2259CrossRef
2.
go back to reference Zou W, Yu L, Liu XG, Chen L, Zhang X, Qiao D (2012) Effects of amylose/amylopectin ratio on starch-based superabsorbent polymers. Carbohydr Polym 87:1583–1588CrossRef Zou W, Yu L, Liu XG, Chen L, Zhang X, Qiao D (2012) Effects of amylose/amylopectin ratio on starch-based superabsorbent polymers. Carbohydr Polym 87:1583–1588CrossRef
3.
go back to reference Rindlav-Westling Å, Stading M, Gatenholm P (2002) Crystallinity and morphology in films of starch, amylose and amylopectin blends. Biomacromolecules 3:84–91CrossRef Rindlav-Westling Å, Stading M, Gatenholm P (2002) Crystallinity and morphology in films of starch, amylose and amylopectin blends. Biomacromolecules 3:84–91CrossRef
4.
go back to reference Zhang R (2006) Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. Biomacromolecules 7:3345–3355CrossRef Zhang R (2006) Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. Biomacromolecules 7:3345–3355CrossRef
5.
go back to reference Nourmohammadi J, Ghaee A, Liavalic SH (2016) Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration. Carbohydr Polym 138:172–179CrossRef Nourmohammadi J, Ghaee A, Liavalic SH (2016) Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration. Carbohydr Polym 138:172–179CrossRef
6.
go back to reference Oliveira JT, Crawford A, Mundy JM, Moreira AR, Gomes ME, Hatton PV, Reis RL (2007) A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. J Mater Sci Mater Med 18:295–302CrossRef Oliveira JT, Crawford A, Mundy JM, Moreira AR, Gomes ME, Hatton PV, Reis RL (2007) A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. J Mater Sci Mater Med 18:295–302CrossRef
7.
go back to reference Pashkulev I, López-Pérez PM, Azevedo HS, Reis RL (2010) Highly porous and interconnected starch-based scaffolds: production, characterization and surface modification. Mater Sci Eng C 30:981–989CrossRef Pashkulev I, López-Pérez PM, Azevedo HS, Reis RL (2010) Highly porous and interconnected starch-based scaffolds: production, characterization and surface modification. Mater Sci Eng C 30:981–989CrossRef
8.
go back to reference Santos MI, Ungerc RE, Sousa RA, Reis RL, Kirkpatrick CJ (2009) Crosstalk between osteoblasts and endothelial cells co-cultured on a polycapro-lactone–starch scaffold and the in vitro development of vascularization. Biomaterials 30:4407–4415CrossRef Santos MI, Ungerc RE, Sousa RA, Reis RL, Kirkpatrick CJ (2009) Crosstalk between osteoblasts and endothelial cells co-cultured on a polycapro-lactone–starch scaffold and the in vitro development of vascularization. Biomaterials 30:4407–4415CrossRef
9.
go back to reference Santos TC, Marquesa AP, Höring B, Martins AR, Tuzlakoglu K, Castro AG, Griensven M, Reis RL (2010) In vivo short-term and long-term host reaction to starch-based scaffolds. Acta Biomater 6:4314–4326CrossRef Santos TC, Marquesa AP, Höring B, Martins AR, Tuzlakoglu K, Castro AG, Griensven M, Reis RL (2010) In vivo short-term and long-term host reaction to starch-based scaffolds. Acta Biomater 6:4314–4326CrossRef
10.
go back to reference Al-Karawi AJM, Al-Daraji AHR (2010) Preparation and using of acrylamide grafted starch as polymer drug carrier. Carbohydr Polym 79:769–774CrossRef Al-Karawi AJM, Al-Daraji AHR (2010) Preparation and using of acrylamide grafted starch as polymer drug carrier. Carbohydr Polym 79:769–774CrossRef
11.
go back to reference Assaada E, Wang YJ, Zhu XX, Mateescua MA (2011) Polyelectrolyte complex of carboxymethyl starch and chitosan as drug carrier for oral administration. Carbohydr Polym 84:1399–1407CrossRef Assaada E, Wang YJ, Zhu XX, Mateescua MA (2011) Polyelectrolyte complex of carboxymethyl starch and chitosan as drug carrier for oral administration. Carbohydr Polym 84:1399–1407CrossRef
12.
go back to reference Pringels E, Ameye D, Vervaet C, Foreman P, Remon JP (2005) Starch/CarbopolR spray-dried mixtures as excipients for oral sustained drug delivery. J Control Release 103:635–641CrossRef Pringels E, Ameye D, Vervaet C, Foreman P, Remon JP (2005) Starch/CarbopolR spray-dried mixtures as excipients for oral sustained drug delivery. J Control Release 103:635–641CrossRef
13.
go back to reference Santander-Ortega MJ, Stauner T, Loretz B, Ortega-Vinuesa JL, Bastos-González D, Wenz G, Schaefer UF, Lehr CM (2010) Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release 141:85–92CrossRef Santander-Ortega MJ, Stauner T, Loretz B, Ortega-Vinuesa JL, Bastos-González D, Wenz G, Schaefer UF, Lehr CM (2010) Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release 141:85–92CrossRef
14.
go back to reference Subramanian SB, Francis AP, Devasena T (2014) Chitosan–starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydr Polym 114:170–178CrossRef Subramanian SB, Francis AP, Devasena T (2014) Chitosan–starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydr Polym 114:170–178CrossRef
15.
go back to reference Arockianathana PM, Sekara S, Sankara S, Kumaranb B, Sastry TP (2012) Evaluation of biocomposite films containing alginate and sago starch impregnated with silver nano particles. Carbohydr Polym 90:717–724CrossRef Arockianathana PM, Sekara S, Sankara S, Kumaranb B, Sastry TP (2012) Evaluation of biocomposite films containing alginate and sago starch impregnated with silver nano particles. Carbohydr Polym 90:717–724CrossRef
16.
go back to reference Wittaya-areekul S, Prahsarn C (2006) Development and in vitro evaluation of chitosan-polysaccharides composite wound dressings. Int J Pharm 313:123–128CrossRef Wittaya-areekul S, Prahsarn C (2006) Development and in vitro evaluation of chitosan-polysaccharides composite wound dressings. Int J Pharm 313:123–128CrossRef
17.
go back to reference Beilvert A, Chaubet F, Chaunier L, Guilois S, Pavon-Djavid G, Letourneur D, Meddahi-Pellé A, Lourdin D (2014) Shape-memory starch for resorbable biomedical devices. Carbohydr Polym 99:242–248CrossRef Beilvert A, Chaubet F, Chaunier L, Guilois S, Pavon-Djavid G, Letourneur D, Meddahi-Pellé A, Lourdin D (2014) Shape-memory starch for resorbable biomedical devices. Carbohydr Polym 99:242–248CrossRef
18.
go back to reference Feng X, Zhang F, Dong R, Wang H, Liu J, Liu X, Li W, Yao J, Xu J, Yu B (2010) Effects of hydroxyethyl starch (130 kD) on brain inflammatory response and outcome during normotensive sepsis. Int Immunopharmacol 10:859–864CrossRef Feng X, Zhang F, Dong R, Wang H, Liu J, Liu X, Li W, Yao J, Xu J, Yu B (2010) Effects of hydroxyethyl starch (130 kD) on brain inflammatory response and outcome during normotensive sepsis. Int Immunopharmacol 10:859–864CrossRef
19.
go back to reference Alves CM, Reis RL, Hunt JA (2003) Preliminary study on human protein absorption and leukocyte adhesion to starch-based biomaterials. J Mater Sci Mater Med 14:157–165CrossRef Alves CM, Reis RL, Hunt JA (2003) Preliminary study on human protein absorption and leukocyte adhesion to starch-based biomaterials. J Mater Sci Mater Med 14:157–165CrossRef
20.
go back to reference Lewis KM, Atlee H, Mannone A, Lin L, Goppelt A (2015) Efficacy of hemostatic matrix and microporous polysaccharide hemospheres. J Surg Res 193:825–830CrossRef Lewis KM, Atlee H, Mannone A, Lin L, Goppelt A (2015) Efficacy of hemostatic matrix and microporous polysaccharide hemospheres. J Surg Res 193:825–830CrossRef
21.
go back to reference Bursali EA, Coskun S, Kizil M, Yurdakoc M (2011) Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels. Carbohydr Polym 83:1377–1383CrossRef Bursali EA, Coskun S, Kizil M, Yurdakoc M (2011) Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels. Carbohydr Polym 83:1377–1383CrossRef
22.
go back to reference Cinelli P, Chiellini E, Lawton JW, Imam SH (2006) Foamed articles based on potato starch, corn fibers and poly (vinyl alcohol). Polym Degrad Stab 91:1147–1155CrossRef Cinelli P, Chiellini E, Lawton JW, Imam SH (2006) Foamed articles based on potato starch, corn fibers and poly (vinyl alcohol). Polym Degrad Stab 91:1147–1155CrossRef
23.
go back to reference Borghei M, Karbassi AR, Khoramnejadian S, Oromiehie A, Javid AH (2010) Microbial biodegradable potato starch based low density polyethylene. Afr J Biotechnol 9:4075–4080 Borghei M, Karbassi AR, Khoramnejadian S, Oromiehie A, Javid AH (2010) Microbial biodegradable potato starch based low density polyethylene. Afr J Biotechnol 9:4075–4080
24.
go back to reference Vieyra H, Aguilar-Méndez MA, San Martín-Martínez E (2013) Study of biodegradation evolution during composting of polyethylene–starch blends using scanning Electron microscopy. J Appl Polym Sci 127:845–853CrossRef Vieyra H, Aguilar-Méndez MA, San Martín-Martínez E (2013) Study of biodegradation evolution during composting of polyethylene–starch blends using scanning Electron microscopy. J Appl Polym Sci 127:845–853CrossRef
25.
go back to reference He Y, Kong W, Wang W, Liu T, Liu Y, Gong Q, Gao J (2012) Modified natural halloysite/potato starch composite films. Carbohydr Polym 87:2706–2711CrossRef He Y, Kong W, Wang W, Liu T, Liu Y, Gong Q, Gao J (2012) Modified natural halloysite/potato starch composite films. Carbohydr Polym 87:2706–2711CrossRef
26.
go back to reference Mei J, Yuan YL, Wu Y, Li YF (2013) Characterization of edible starch-chitosan film and its application in the storage of Mongolian cheese. Int J Biol Macromol 57:17–21CrossRef Mei J, Yuan YL, Wu Y, Li YF (2013) Characterization of edible starch-chitosan film and its application in the storage of Mongolian cheese. Int J Biol Macromol 57:17–21CrossRef
27.
go back to reference Mendes JF, Paschoalin RT, Carmona VB, Sena Neto AR, Marques ACP, Marconcini JM, Mattoso LHC, Medeiros ES, Oliveira JE (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458CrossRef Mendes JF, Paschoalin RT, Carmona VB, Sena Neto AR, Marques ACP, Marconcini JM, Mattoso LHC, Medeiros ES, Oliveira JE (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458CrossRef
28.
go back to reference Ren L, Yan X, Zhou J, Tong J, Su X (2017) Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int J Biol Macromol 105:1636–1643CrossRef Ren L, Yan X, Zhou J, Tong J, Su X (2017) Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int J Biol Macromol 105:1636–1643CrossRef
29.
go back to reference Talón E, Trifkovic KT, Vargas M, Chiralt A, González-Martínez C (2017) Release of polyphenols from starch-chitosan based films containing thyme extract. Carbohydr Polym 175:122–130CrossRef Talón E, Trifkovic KT, Vargas M, Chiralt A, González-Martínez C (2017) Release of polyphenols from starch-chitosan based films containing thyme extract. Carbohydr Polym 175:122–130CrossRef
30.
go back to reference Chen J, Liu C, Chen Y, Chen Y, Chang PR (2008) Structural characterization and properties of starch/konjac glucomannan blend films. Carbohydr Polym 74:946–952CrossRef Chen J, Liu C, Chen Y, Chen Y, Chang PR (2008) Structural characterization and properties of starch/konjac glucomannan blend films. Carbohydr Polym 74:946–952CrossRef
31.
go back to reference Kadokawa J, Murakami M, Takegawa A, Kaneko Y (2009) Preparation of cellulose–starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75:180–183CrossRef Kadokawa J, Murakami M, Takegawa A, Kaneko Y (2009) Preparation of cellulose–starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75:180–183CrossRef
32.
go back to reference Levy I, Paldi T, Shoseyov O (2004) Engineering a bifunctional starch–cellulose cross-bridge protein. Biomaterials 25:1841–1849CrossRef Levy I, Paldi T, Shoseyov O (2004) Engineering a bifunctional starch–cellulose cross-bridge protein. Biomaterials 25:1841–1849CrossRef
33.
go back to reference Djabali D, Belhaneche N, Nadjemi B, Dulong V, Picton L (2009) Relationship between potato starch isolation methods and kinetic parameters of hydrolysis by free and immobilised a-amylase on alginate (from Laminaria digitata algae). J Food Compos Anal 22:563–570CrossRef Djabali D, Belhaneche N, Nadjemi B, Dulong V, Picton L (2009) Relationship between potato starch isolation methods and kinetic parameters of hydrolysis by free and immobilised a-amylase on alginate (from Laminaria digitata algae). J Food Compos Anal 22:563–570CrossRef
34.
go back to reference Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY (2010) Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydr Polym 79:898–907CrossRef Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY (2010) Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydr Polym 79:898–907CrossRef
35.
go back to reference Gu BK, Park SJ, Kim MS, Kang CM, Kim JI, Kim CH (2013) Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr Polym 97:65–73CrossRef Gu BK, Park SJ, Kim MS, Kang CM, Kim JI, Kim CH (2013) Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr Polym 97:65–73CrossRef
36.
go back to reference Guibal E, Cambe S, Bayle S, Taulemesse JM, Vincent T (2013) Silver/chitosan/cellulose fibers foam composites: from synthesis to antibacterial properties. J Colloid Interface Sci 393:411–420CrossRef Guibal E, Cambe S, Bayle S, Taulemesse JM, Vincent T (2013) Silver/chitosan/cellulose fibers foam composites: from synthesis to antibacterial properties. J Colloid Interface Sci 393:411–420CrossRef
37.
go back to reference Ferreira VRA, AzenhaAna MA Bustamante AG, Mêna MT, Moura C, Pereira CM, Silva AF (2016) Metal cation sorption ability of immobilized and reticulated chondroitin sulfate or fucoidan through a sol-gel crosslinking scheme. Mater Today Commun 8:172–182CrossRef Ferreira VRA, AzenhaAna MA Bustamante AG, Mêna MT, Moura C, Pereira CM, Silva AF (2016) Metal cation sorption ability of immobilized and reticulated chondroitin sulfate or fucoidan through a sol-gel crosslinking scheme. Mater Today Commun 8:172–182CrossRef
38.
go back to reference Zhang M, Mullens C, Gorski W (2006) Amperometric glutamate biosensor based on chitosan enzyme film. Electrochim Acta 51(21):4528–4532CrossRef Zhang M, Mullens C, Gorski W (2006) Amperometric glutamate biosensor based on chitosan enzyme film. Electrochim Acta 51(21):4528–4532CrossRef
39.
go back to reference Nesic AR, Onjia A, Ostojic SB, Micic DM, Velickovic SV, Antonovicc DG (2016) Novel biosensor films based on chitosan. Mater Lett 167:47–49CrossRef Nesic AR, Onjia A, Ostojic SB, Micic DM, Velickovic SV, Antonovicc DG (2016) Novel biosensor films based on chitosan. Mater Lett 167:47–49CrossRef
40.
go back to reference Ong SY, Wu J, Moochhala SM, Tan MH, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332CrossRef Ong SY, Wu J, Moochhala SM, Tan MH, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332CrossRef
41.
go back to reference Yu X, Guo L, Liu M, Cao X, Shang S, Liu Z, Huang D, Cao Y, Cui F, Tian L (2018) Callicarpa nudiflora loaded on chitosan-collagen/organomontmorillonite composite membrane for antibacterial activity of wound dressing. Int J Biol Macromol 120:2279–2284CrossRef Yu X, Guo L, Liu M, Cao X, Shang S, Liu Z, Huang D, Cao Y, Cui F, Tian L (2018) Callicarpa nudiflora loaded on chitosan-collagen/organomontmorillonite composite membrane for antibacterial activity of wound dressing. Int J Biol Macromol 120:2279–2284CrossRef
42.
go back to reference Wang T, Zhu XK, Xue XT, Wu DY (2012) Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 88:75–83CrossRef Wang T, Zhu XK, Xue XT, Wu DY (2012) Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 88:75–83CrossRef
43.
go back to reference Dai M, Zheng X, Xu X, Kong XY, Li XY, Guo G, Luo F, Zhao X, Wei YQ, Qian Z (2009) Chitosan-alginate sponge: preparation and application in curcumin delivery for dermal wound healing in rat. J Biomed Biotechnol 2009:1–8CrossRef Dai M, Zheng X, Xu X, Kong XY, Li XY, Guo G, Luo F, Zhao X, Wei YQ, Qian Z (2009) Chitosan-alginate sponge: preparation and application in curcumin delivery for dermal wound healing in rat. J Biomed Biotechnol 2009:1–8CrossRef
44.
go back to reference Doulabi AH, Mirzadeh H, Imani M, Samadi N (2013) Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym 92:48–56CrossRef Doulabi AH, Mirzadeh H, Imani M, Samadi N (2013) Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym 92:48–56CrossRef
45.
go back to reference Francesko A, Tzanov T (2011) Chitin, chitosan and derivatives for wound healing and tissue engineering. Adv Biochem Eng Biotechnol 125:1–27PubMed Francesko A, Tzanov T (2011) Chitin, chitosan and derivatives for wound healing and tissue engineering. Adv Biochem Eng Biotechnol 125:1–27PubMed
46.
go back to reference Tanase CE, Spiridon I (2014) PLA/chitosan/keratin composites for biomedical applications. Mater Sci Eng C 40:242–247CrossRef Tanase CE, Spiridon I (2014) PLA/chitosan/keratin composites for biomedical applications. Mater Sci Eng C 40:242–247CrossRef
47.
go back to reference Kumar S, Kumari M, Mallick MA, Swain BS, Sobral AJFN, Dutta PK (2015) Preparation and characterization of microporous bionanocomposites for biomedical applications. Asian Chitin J 11(1):23–26 Kumar S, Kumari M, Mallick MA, Swain BS, Sobral AJFN, Dutta PK (2015) Preparation and characterization of microporous bionanocomposites for biomedical applications. Asian Chitin J 11(1):23–26
48.
go back to reference Liu M, Zhang Y, Wu C, Xiong S, Zhou C (2012) Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int J Biol Macromol 51:566–575CrossRef Liu M, Zhang Y, Wu C, Xiong S, Zhou C (2012) Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int J Biol Macromol 51:566–575CrossRef
49.
go back to reference Kumar S, Nigam N, Ghosh T, Dutta PK, Yadav RS, Pandey SC (2010) Preparation, characterization, and optical properties of a chitosan-anthraldehyde crosslinkable film. J Appl Polym Sci 115(5):3056–3062CrossRef Kumar S, Nigam N, Ghosh T, Dutta PK, Yadav RS, Pandey SC (2010) Preparation, characterization, and optical properties of a chitosan-anthraldehyde crosslinkable film. J Appl Polym Sci 115(5):3056–3062CrossRef
50.
go back to reference Kumar S, Kumari M, Dutta PK, Koh J (2014) Chitosan biopolymer Schiff Base: preparation, characterization, optical and antibacterial activity. Int J Polym Mater Polym Biomater 63:173–177CrossRef Kumar S, Kumari M, Dutta PK, Koh J (2014) Chitosan biopolymer Schiff Base: preparation, characterization, optical and antibacterial activity. Int J Polym Mater Polym Biomater 63:173–177CrossRef
51.
go back to reference Kumar S, Deepak V, Kumari M, Dutta PK (2016) Antibacterial activity of diisocyanate-modified chitosan for biomedical applications. Int J Biol Macromol 84:349–353CrossRef Kumar S, Deepak V, Kumari M, Dutta PK (2016) Antibacterial activity of diisocyanate-modified chitosan for biomedical applications. Int J Biol Macromol 84:349–353CrossRef
52.
go back to reference Azadehsadat HD, Hamid M, Mohammad I, Nasrin S (2013) Chitosan /polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym 92:48–56CrossRef Azadehsadat HD, Hamid M, Mohammad I, Nasrin S (2013) Chitosan /polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym 92:48–56CrossRef
53.
go back to reference Ferrero F, Periolatto M, Vineis C, Varesano A (2014) Chitosan coated cotton gauze for antibacterial water filtration. Carbohydr Polym 103:207–212CrossRef Ferrero F, Periolatto M, Vineis C, Varesano A (2014) Chitosan coated cotton gauze for antibacterial water filtration. Carbohydr Polym 103:207–212CrossRef
54.
go back to reference Park PJ, Je JY, Jung WK, Ahn CB, Kim SK (2004) Anticoagulant activity of heterochitosans and their oligosaccharide sulfates. Eur Food Res Technol 219:529–533CrossRef Park PJ, Je JY, Jung WK, Ahn CB, Kim SK (2004) Anticoagulant activity of heterochitosans and their oligosaccharide sulfates. Eur Food Res Technol 219:529–533CrossRef
55.
go back to reference Minagawa T, Okamura Y, Shigemasa Y, Minami S, Okamoto Y (2007) Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr Polym 67:640–644CrossRef Minagawa T, Okamura Y, Shigemasa Y, Minami S, Okamoto Y (2007) Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr Polym 67:640–644CrossRef
56.
go back to reference Muzzarelli RAA, Guerrieri M, Goteri G, Muzzarelli C, Armeni T, Ghiselli R (2005) The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials 26:5844–5854CrossRef Muzzarelli RAA, Guerrieri M, Goteri G, Muzzarelli C, Armeni T, Ghiselli R (2005) The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials 26:5844–5854CrossRef
57.
go back to reference Liu M, Shen Y, Ao P, Dai L, Liu Z, Zhou C (2014) The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv 4:23540–23553CrossRef Liu M, Shen Y, Ao P, Dai L, Liu Z, Zhou C (2014) The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv 4:23540–23553CrossRef
58.
go back to reference Kheirabadi BS, Mace JE, Terrazas IB, Fedyk CG, Estep JS, Dubick MA, Blackbourne LH (2010) Safety evaluation of new hemostatic agents, Smectite granules, and kaolin-coated gauze in a vascular injury wound model in swine. The Journal of Trauma Injury, Infection, and Critical Care 68:269–278CrossRef Kheirabadi BS, Mace JE, Terrazas IB, Fedyk CG, Estep JS, Dubick MA, Blackbourne LH (2010) Safety evaluation of new hemostatic agents, Smectite granules, and kaolin-coated gauze in a vascular injury wound model in swine. The Journal of Trauma Injury, Infection, and Critical Care 68:269–278CrossRef
59.
go back to reference Sun X, Tang Z, Pan M, Wang Z, Yang H, Liu H (2017) Chitosan/kaolin composite porous microspheres with high hemostatic efficacy. Carbohydr Polym 177:135–143CrossRef Sun X, Tang Z, Pan M, Wang Z, Yang H, Liu H (2017) Chitosan/kaolin composite porous microspheres with high hemostatic efficacy. Carbohydr Polym 177:135–143CrossRef
60.
go back to reference Li X, Li YC, Chen M, Shi Q, Sun R, Wang X (2018) Chitosan/rectorite nanocomposite with injectable functionality for skin hemostasis. J Mater Chem B 6:6544–6549CrossRef Li X, Li YC, Chen M, Shi Q, Sun R, Wang X (2018) Chitosan/rectorite nanocomposite with injectable functionality for skin hemostasis. J Mater Chem B 6:6544–6549CrossRef
61.
go back to reference Dang KM, Yoksan R (2015) Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr Polym 115:575–581CrossRef Dang KM, Yoksan R (2015) Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr Polym 115:575–581CrossRef
62.
go back to reference Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crop Prod 21:185–192CrossRef Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crop Prod 21:185–192CrossRef
63.
go back to reference Bangyekan C, Aht-Ong D, Srikulkit K (2006) Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydr Polym 63:61–71CrossRef Bangyekan C, Aht-Ong D, Srikulkit K (2006) Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydr Polym 63:61–71CrossRef
64.
go back to reference Bonilla J, Atarés L, Vargas M, Chiralt A (2013) Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J Food Eng 114:303–312CrossRef Bonilla J, Atarés L, Vargas M, Chiralt A (2013) Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J Food Eng 114:303–312CrossRef
65.
go back to reference Lopez O, Garcia MA, Villar A, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT-Food Sci Technol 57:106–115CrossRef Lopez O, Garcia MA, Villar A, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT-Food Sci Technol 57:106–115CrossRef
66.
go back to reference Zhong Y, Song X, Li Y (2011) Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydr Polym 84:335–342CrossRef Zhong Y, Song X, Li Y (2011) Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydr Polym 84:335–342CrossRef
67.
go back to reference Baskar D, Sampath Kumar TS (2009) Effect of deacetylation time on the preparation, properties and swelling behavior of chitosan films. Carbohydr Polym 78:767–772CrossRef Baskar D, Sampath Kumar TS (2009) Effect of deacetylation time on the preparation, properties and swelling behavior of chitosan films. Carbohydr Polym 78:767–772CrossRef
68.
go back to reference Kozlov SS, Blennow A, Krivandin AV, Yuryev VP (2007) Structural and thermodynamic properties of starches extracted from GBSS and GWD suppressed potato lines. Int J Biol Macromol 40:449–460CrossRef Kozlov SS, Blennow A, Krivandin AV, Yuryev VP (2007) Structural and thermodynamic properties of starches extracted from GBSS and GWD suppressed potato lines. Int J Biol Macromol 40:449–460CrossRef
69.
go back to reference Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21:807–813CrossRef Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21:807–813CrossRef
70.
go back to reference Bof MJ, Bordagaray VC, Locaso DE, García MA (2015) Chitosan molecular weight effect on starch-composite film properties. Food Hydrocoll 51:281–294CrossRef Bof MJ, Bordagaray VC, Locaso DE, García MA (2015) Chitosan molecular weight effect on starch-composite film properties. Food Hydrocoll 51:281–294CrossRef
71.
go back to reference Bonilla J, Talón E, Atarés L, Vargas M, Chiralt A (2013) Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch–chitosan films. J Food Eng 118:271–278CrossRef Bonilla J, Talón E, Atarés L, Vargas M, Chiralt A (2013) Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch–chitosan films. J Food Eng 118:271–278CrossRef
72.
go back to reference Mathew S, Brahmakumar M, Emilia Abraham T (2006) Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films. Biopolymers 82:176–187CrossRef Mathew S, Brahmakumar M, Emilia Abraham T (2006) Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films. Biopolymers 82:176–187CrossRef
73.
go back to reference Elsner JJ, Shefy-Peleg A, Zilberman M (2010) Novel biodegradable composite wound dressings with controlled release of antibiotics: microstructure, mechanical and physical properties. J Biomed Mater Res B Appl Biomater 93B:425–435CrossRef Elsner JJ, Shefy-Peleg A, Zilberman M (2010) Novel biodegradable composite wound dressings with controlled release of antibiotics: microstructure, mechanical and physical properties. J Biomed Mater Res B Appl Biomater 93B:425–435CrossRef
74.
go back to reference Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch-chitosan blend biodegradable film. LWT Food Sci Technol 41:1633–1641CrossRef Bourtoom T, Chinnan MS (2008) Preparation and properties of rice starch-chitosan blend biodegradable film. LWT Food Sci Technol 41:1633–1641CrossRef
75.
go back to reference Lin B, Du Y, Li Y, Liang X, Wang X, Deng W, Wang X, Li L, Kennedy JF (2010) The effect of moist heat treatment on the characteristic of starch-based composite materials coating with chitosan. Carbohydr Polym 81:554–559CrossRef Lin B, Du Y, Li Y, Liang X, Wang X, Deng W, Wang X, Li L, Kennedy JF (2010) The effect of moist heat treatment on the characteristic of starch-based composite materials coating with chitosan. Carbohydr Polym 81:554–559CrossRef
76.
go back to reference Takegawa A, Murakami MA, Kaneko Y, Kadokawa JI (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79:85–90CrossRef Takegawa A, Murakami MA, Kaneko Y, Kadokawa JI (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79:85–90CrossRef
77.
go back to reference Miranda ES, Silva TH, Reis RL, Mano JF (2011) Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering. Tissue Eng A 17:21–22CrossRef Miranda ES, Silva TH, Reis RL, Mano JF (2011) Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering. Tissue Eng A 17:21–22CrossRef
78.
go back to reference Agay D, Andriollo-Sanchez M, Claeyssen C, Touvard L, Denis J, Rousse AM, Chancerelle Y (2008) Interleukin-6, TNF-alpha and interleukin-1 beta levels in blood and tissue in severely burned rats. Eur Cytokine Netw 19:1–7PubMed Agay D, Andriollo-Sanchez M, Claeyssen C, Touvard L, Denis J, Rousse AM, Chancerelle Y (2008) Interleukin-6, TNF-alpha and interleukin-1 beta levels in blood and tissue in severely burned rats. Eur Cytokine Netw 19:1–7PubMed
79.
go back to reference Ma P, Liu HT, Wei P, Xu QS, Bai XF, Du YG, Yu C (2011) Chitosan oligosaccharides inhibit LPS-induced over-expression of IL-6 and TNF-α in RAW264.7 macrophage cells through blockade of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. Carbohydr Polym 84:1391–1398CrossRef Ma P, Liu HT, Wei P, Xu QS, Bai XF, Du YG, Yu C (2011) Chitosan oligosaccharides inhibit LPS-induced over-expression of IL-6 and TNF-α in RAW264.7 macrophage cells through blockade of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. Carbohydr Polym 84:1391–1398CrossRef
80.
go back to reference Nakielski P, Pierini F (2019) Blood interactions with nano- and microfibers: recent advances, challenges and applications in nano- and microfibrous hemostatic agents. Acta Biomater 84:63–76CrossRef Nakielski P, Pierini F (2019) Blood interactions with nano- and microfibers: recent advances, challenges and applications in nano- and microfibrous hemostatic agents. Acta Biomater 84:63–76CrossRef
Metadata
Title
Effects of amylose content on starch-chitosan composite film and its application as a wound dressing
Authors
Wen-Ching Wu
Po-Yuan Hsiao
Yi-Cheng Huang
Publication date
01-06-2019
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 6/2019
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1770-0

Other articles of this Issue 6/2019

Journal of Polymer Research 6/2019 Go to the issue

Premium Partners