Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2022

30-11-2021 | Technical Article

Effects of Ball Milling Times on Microstructure and Properties of Cu matrix Composites Reinforced with Graphene Oxide Nanosheets

Authors: K. X. Xu, P. Y. Guo, M. S. Song, H. Xue, L. Zhang, L. L. Dong, Y. S. Zhang

Published in: Journal of Materials Engineering and Performance | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene oxide nanosheets reinforced Cu matrix composites were prepared using ball milling process and spark plasma sintering (SPS). Effects of ball milling times on morphology of composites powders were studied. Furthermore, microstructure evolution and properties of sintered composites were investigated. Results show that the size and shape of the composites gradually transformed from regular sphericity to flake with the increase in ball milling times. Correspondingly, the average flake diameter of Cu alloy powders increased gradually from 7.2 ± 0.5 to 25.0 ± 1.0 μm. Compared with the matrix alloy, the tensile strength of the composites increases significantly and the elongation decreases gradually. For 20 h of ball milling, the yield strength of composites increased by 35% from 126 to 170 MPa, and elongation decreases from 44 to 31%. However, for 60 h of ball milling, the tensile strength and yield strength increased to 290 and 211 MPa, respectively, while the elongation significantly descends. Besides, during the ball milling, the conductivity of composite gets a slight decrease owing to the increasing degree of powder defects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L.L. Dong, J.W. Lu, Y.Q. Fu, W.T. Huo, Y. Liu, D.D. Li and Y.S. Zhang, Carbonaceous Nanomaterial Reinforced Ti-6Al-4V Matrix Composites: Properties, Interfacial Structures and Strengthening Mechanisms, Carbon, 2020, 164, p 272–286.CrossRef L.L. Dong, J.W. Lu, Y.Q. Fu, W.T. Huo, Y. Liu, D.D. Li and Y.S. Zhang, Carbonaceous Nanomaterial Reinforced Ti-6Al-4V Matrix Composites: Properties, Interfacial Structures and Strengthening Mechanisms, Carbon, 2020, 164, p 272–286.CrossRef
2.
go back to reference Z.D. Shi, J. Sheng, Z.Y. Yang, Z.Y. Liu, S. Chen, M. Wang and L.D. Wang, Facile Synthesis of High-Performance Carbon Nanosheet/Cu Composites from Copper Formate, Carbon, 2020, 165, p 349–357.CrossRef Z.D. Shi, J. Sheng, Z.Y. Yang, Z.Y. Liu, S. Chen, M. Wang and L.D. Wang, Facile Synthesis of High-Performance Carbon Nanosheet/Cu Composites from Copper Formate, Carbon, 2020, 165, p 349–357.CrossRef
3.
go back to reference L. Liu, Y. Tang, H. Zhao, J. Zhu and W. Hu, Fabrication and Properties of Short Carbon Fibers Reinforced Copper Matrix Composites, Mater. Sci., 2007, 43, p 974–979.CrossRef L. Liu, Y. Tang, H. Zhao, J. Zhu and W. Hu, Fabrication and Properties of Short Carbon Fibers Reinforced Copper Matrix Composites, Mater. Sci., 2007, 43, p 974–979.CrossRef
4.
go back to reference O. Güler and N. Bağcı, A Short Review on Mechanical Properties of Graphene Reinforced Metal Matrix Composites, J. Mark. Res., 2020, 9(3), p 6808–6833. O. Güler and N. Bağcı, A Short Review on Mechanical Properties of Graphene Reinforced Metal Matrix Composites, J. Mark. Res., 2020, 9(3), p 6808–6833.
5.
go back to reference W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakatab and H. Morib, Microstructure and Tensile Properties of In Situ (TiB + TiC)/Ti6242 (TiB:TiC =1:1) Composites Prepared by Common Casting Technique, Mater. Sci. Eng. A, 2001, 311(1–2), p 142–150. W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakatab and H. Morib, Microstructure and Tensile Properties of In Situ (TiB + TiC)/Ti6242 (TiB:TiC =1:1) Composites Prepared by Common Casting Technique, Mater. Sci. Eng. A, 2001, 311(1–2), p 142–150.
6.
go back to reference Y. Tang, X. Yang, R. Wang and M. Li, Enhancement of the Mechanical Properties of Graphene-Copper Composites with Graphene-Nickel Hybrids, Mater. Sci. Eng. A, 2014, 599, p 247–254.CrossRef Y. Tang, X. Yang, R. Wang and M. Li, Enhancement of the Mechanical Properties of Graphene-Copper Composites with Graphene-Nickel Hybrids, Mater. Sci. Eng. A, 2014, 599, p 247–254.CrossRef
7.
go back to reference S.J. Yoo, S.H. Han and W.J. Kim, A Combination of Ball Milling and High-Ratio Differential Speed Rolling for Synthesizing Carbon Nanotube/Copper Composites, Carbon, 2013, 61, p 487–500.CrossRef S.J. Yoo, S.H. Han and W.J. Kim, A Combination of Ball Milling and High-Ratio Differential Speed Rolling for Synthesizing Carbon Nanotube/Copper Composites, Carbon, 2013, 61, p 487–500.CrossRef
8.
go back to reference L.D. Wang, Z.Y. Yang, Y. Cui, B. Wei, S.C. Xu, J. Sheng, M. Wang, Y.P. Zhu and W.D. Fei, Graphene-Copper Composite with Micro-layered Grains and Ultrahigh Strength, Sci. Rep., 2017, 7, p 41896.CrossRef L.D. Wang, Z.Y. Yang, Y. Cui, B. Wei, S.C. Xu, J. Sheng, M. Wang, Y.P. Zhu and W.D. Fei, Graphene-Copper Composite with Micro-layered Grains and Ultrahigh Strength, Sci. Rep., 2017, 7, p 41896.CrossRef
9.
go back to reference D.H. Nam, Y.K. Kim, S.I. Cha and S.H. Hong, Effect of CNTs on Precipitation Hardening Behavior of CNT/Al-Cu Composites, Carbon, 2014, 50, p 4809–4814.CrossRef D.H. Nam, Y.K. Kim, S.I. Cha and S.H. Hong, Effect of CNTs on Precipitation Hardening Behavior of CNT/Al-Cu Composites, Carbon, 2014, 50, p 4809–4814.CrossRef
10.
go back to reference L. Jiang, J.L. Fan, Z.Q. Li, X.Z. Kai, D. Zhang, Z.X. Chen, S. Humphrieset, G. Henessc and W.Y. Yeungc, An Approach to the Uniform Dispersion of a High Volume Fraction of Carbon Nanotubes in Aluminum Powder, Carbon, 2021, 49, p 1965–1971.CrossRef L. Jiang, J.L. Fan, Z.Q. Li, X.Z. Kai, D. Zhang, Z.X. Chen, S. Humphrieset, G. Henessc and W.Y. Yeungc, An Approach to the Uniform Dispersion of a High Volume Fraction of Carbon Nanotubes in Aluminum Powder, Carbon, 2021, 49, p 1965–1971.CrossRef
11.
go back to reference I. Firkowska, A. Boden, B. Boerner and S. Reich, The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites, Nano Lett., 2015, 15, p 4745–4751.CrossRef I. Firkowska, A. Boden, B. Boerner and S. Reich, The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites, Nano Lett., 2015, 15, p 4745–4751.CrossRef
12.
go back to reference A. Guillet, E.Y. Nzoma and P. Pareige, A New Processing Technique for Copper-Graphite Multififilamentary Nanocomposite Wire: Microstructures and Electrical Properties, Mater. Process. Technol., 2017, 182, p 50–57.CrossRef A. Guillet, E.Y. Nzoma and P. Pareige, A New Processing Technique for Copper-Graphite Multififilamentary Nanocomposite Wire: Microstructures and Electrical Properties, Mater. Process. Technol., 2017, 182, p 50–57.CrossRef
13.
go back to reference M.M. Dewidar and J.K. Lim, Manufacturing Processes and Properties of Copper-Graphite Composites Produced by High-Frequency Induction Heating Sintering, J. Compos. Mater., 2007, 41(18), p 2183–2194.CrossRef M.M. Dewidar and J.K. Lim, Manufacturing Processes and Properties of Copper-Graphite Composites Produced by High-Frequency Induction Heating Sintering, J. Compos. Mater., 2007, 41(18), p 2183–2194.CrossRef
14.
go back to reference R. Shu, X.S. Jiang, H.L. Sun, Z.Y. Shao, T.F. Song and Z.P. Luo, Recent Researches of the Bio-Inspired Nano-carbon Reinforced Metal Matrix Composites, Compos. A, 2020, 131, p 105816.CrossRef R. Shu, X.S. Jiang, H.L. Sun, Z.Y. Shao, T.F. Song and Z.P. Luo, Recent Researches of the Bio-Inspired Nano-carbon Reinforced Metal Matrix Composites, Compos. A, 2020, 131, p 105816.CrossRef
15.
go back to reference R. Shu, X.S. Jiang, Y.X. Zhang, R. Wuhrer, B. Liu, H.L. Sun, Z.Y. Shao and Z.P. Luo, Microstructure and Mechanical Properties of Nano-Carbon Reinforced Mo-Cu-Zr Composites, Carbon, 2021, 179, p P227-239.CrossRef R. Shu, X.S. Jiang, Y.X. Zhang, R. Wuhrer, B. Liu, H.L. Sun, Z.Y. Shao and Z.P. Luo, Microstructure and Mechanical Properties of Nano-Carbon Reinforced Mo-Cu-Zr Composites, Carbon, 2021, 179, p P227-239.CrossRef
16.
go back to reference K. Chu and C. Jia, Enhanced Strength in Bulk Graphene-Copper Composites, Phys. Status Solidi, 2014, 211(1), p 184–190.CrossRef K. Chu and C. Jia, Enhanced Strength in Bulk Graphene-Copper Composites, Phys. Status Solidi, 2014, 211(1), p 184–190.CrossRef
17.
go back to reference S.S. Hamedan, M. Abdi and S. Sheibani, Comparative Study on Hot Rolling of Cu-Cr and Cu-Cr-CNT Nanocomposites, Trans. Nonferrous Met. Soc. China, 2018, 28(10), p 2044–2052.CrossRef S.S. Hamedan, M. Abdi and S. Sheibani, Comparative Study on Hot Rolling of Cu-Cr and Cu-Cr-CNT Nanocomposites, Trans. Nonferrous Met. Soc. China, 2018, 28(10), p 2044–2052.CrossRef
18.
go back to reference T.S. Koltsova, L.I. Nasibulina, I.V. Anoshkin, V.V. Mishin, E.I. Kauppinen, O.V. Tolochko and A.G. Nasibulin, New Hybrid Copper Composite Materials Based on Carbon Nanostructures, J. Mater. Sci. Eng. B., 2012, 2(4), p 240–246. T.S. Koltsova, L.I. Nasibulina, I.V. Anoshkin, V.V. Mishin, E.I. Kauppinen, O.V. Tolochko and A.G. Nasibulin, New Hybrid Copper Composite Materials Based on Carbon Nanostructures, J. Mater. Sci. Eng. B., 2012, 2(4), p 240–246.
19.
go back to reference J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim and S.H. Hong, Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-Level Mixing Process, Adv. Mater., 2013, 25(46), p 6724–6729.CrossRef J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim and S.H. Hong, Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular-Level Mixing Process, Adv. Mater., 2013, 25(46), p 6724–6729.CrossRef
20.
go back to reference M. Cao, D.B. Xiong, Z.Q. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G.L. Fan, Z.Q. Li and D. Zhang, Aligning Graphene in Bulk Copper: Nacre-Inspired Nanolaminated Architecture Coupled with In-Situ Processing for Enhanced Mechanical Properties and High Electrical Conductivity, Carbon, 2017, 117, p 65–74.CrossRef M. Cao, D.B. Xiong, Z.Q. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G.L. Fan, Z.Q. Li and D. Zhang, Aligning Graphene in Bulk Copper: Nacre-Inspired Nanolaminated Architecture Coupled with In-Situ Processing for Enhanced Mechanical Properties and High Electrical Conductivity, Carbon, 2017, 117, p 65–74.CrossRef
21.
go back to reference L. Jiang, Z.Q. Li, G.L. Fan, L.L. Cao and D. Zhang, The Use of Flake Powder Metallurgy to Produce Carbon Nanotube (CNT)/Aluminum Composites with a Homogenous CNT Distribution, Carbon, 2012, 50(5), p 1993–1998.CrossRef L. Jiang, Z.Q. Li, G.L. Fan, L.L. Cao and D. Zhang, The Use of Flake Powder Metallurgy to Produce Carbon Nanotube (CNT)/Aluminum Composites with a Homogenous CNT Distribution, Carbon, 2012, 50(5), p 1993–1998.CrossRef
22.
go back to reference X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, F.C. Wang, Z.H. Zhang, Y. Wu, Y.X. Ge, S. Chang, R. Shi, Y. Zhou and D.D. Wang, Uniform Dispersion of Multi-layer Graphene Reinforced Pure Titanium Matrix Composites via Flake Powder Metallurgy, Mater. Sci. Eng. A., 2018, 725, p 541–548.CrossRef X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, F.C. Wang, Z.H. Zhang, Y. Wu, Y.X. Ge, S. Chang, R. Shi, Y. Zhou and D.D. Wang, Uniform Dispersion of Multi-layer Graphene Reinforced Pure Titanium Matrix Composites via Flake Powder Metallurgy, Mater. Sci. Eng. A., 2018, 725, p 541–548.CrossRef
23.
go back to reference Y. Zhou, L.L. Dong, Q.H. Yang, W.T. Huo, Y.Q. Fu, J.S. Yu, Y. Liu and Y.S. Zhang, Controlled Interfacial Reactions and Superior Mechanical Properties of High Energy Ball Milled/Spark Plasma Sintered Ti-6Al-4V-Graphene Composite, Adv. Eng. Mater., 2021, 23, p 2001411.CrossRef Y. Zhou, L.L. Dong, Q.H. Yang, W.T. Huo, Y.Q. Fu, J.S. Yu, Y. Liu and Y.S. Zhang, Controlled Interfacial Reactions and Superior Mechanical Properties of High Energy Ball Milled/Spark Plasma Sintered Ti-6Al-4V-Graphene Composite, Adv. Eng. Mater., 2021, 23, p 2001411.CrossRef
24.
go back to reference L.L. Dong, W. Zhang, Y.Q. Fu, J.W. Lu, Y. Liu and Y.S. Zhang, Synergetic Enhancement of Strength and Ductility for Titanium-Based Composites Reinforced with Nickel Metallized Multi-walled Carbon Nanotubes, Carbon., 2021, 184, p 583–595.CrossRef L.L. Dong, W. Zhang, Y.Q. Fu, J.W. Lu, Y. Liu and Y.S. Zhang, Synergetic Enhancement of Strength and Ductility for Titanium-Based Composites Reinforced with Nickel Metallized Multi-walled Carbon Nanotubes, Carbon., 2021, 184, p 583–595.CrossRef
25.
go back to reference K.S. Munir, Y.C. Li, M. Qian and C. Wen, Identifying and Understanding the Effect of Milling Energy on the Synthesis of Carbon Nanotubes Reinforced Titanium Metal Matrix Composites, Carbon, 2016, 99, p 384–397.CrossRef K.S. Munir, Y.C. Li, M. Qian and C. Wen, Identifying and Understanding the Effect of Milling Energy on the Synthesis of Carbon Nanotubes Reinforced Titanium Metal Matrix Composites, Carbon, 2016, 99, p 384–397.CrossRef
26.
go back to reference K.S. Munir, Y.C. Li, D. Liang, M. Qian, W. Xu and C. Wen, Effect of Dispersion Method on the Deterioration, Interfacial Interactions and Re-agglomeration of Carbon Nanotubes in Titanium Metal Matrix Composites, Mater. Des., 2015, 88, p 138–148.CrossRef K.S. Munir, Y.C. Li, D. Liang, M. Qian, W. Xu and C. Wen, Effect of Dispersion Method on the Deterioration, Interfacial Interactions and Re-agglomeration of Carbon Nanotubes in Titanium Metal Matrix Composites, Mater. Des., 2015, 88, p 138–148.CrossRef
27.
go back to reference Y. Qian, C. Li, Y.Z. Qi and J. Zhou, 3D Printing of Graphene Oxide Composites with Well Controlled Alignment, Carbon, 2021, 171(7100), p 777–784.CrossRef Y. Qian, C. Li, Y.Z. Qi and J. Zhou, 3D Printing of Graphene Oxide Composites with Well Controlled Alignment, Carbon, 2021, 171(7100), p 777–784.CrossRef
28.
go back to reference A.Z. Yu, W.S. Yang, C. Zhou, N.B. Zhang, Z.L. Cao, H. Liu, Y.F. Cao, Y. Sun, P.Z. Shao and G.H. Wu, Effect of Ball Milling Time on Graphene Nanosheets Reinforced Al6063 Composite Fabricated by Pressure Infiltration Method, Carbon, 2019, 141, p 25–39.CrossRef A.Z. Yu, W.S. Yang, C. Zhou, N.B. Zhang, Z.L. Cao, H. Liu, Y.F. Cao, Y. Sun, P.Z. Shao and G.H. Wu, Effect of Ball Milling Time on Graphene Nanosheets Reinforced Al6063 Composite Fabricated by Pressure Infiltration Method, Carbon, 2019, 141, p 25–39.CrossRef
29.
go back to reference Y. Cui, L.D. Wang, B. Lin, G.J. Cao and W.D. Fei, Effect of Ball Milling on the Defeat of Few-Layer Graphene and Properties of Copper Matrix Composites, Acta. Metall. Sin. (Engl. Lett.), 2014, 05(v.27), p 201–207. Y. Cui, L.D. Wang, B. Lin, G.J. Cao and W.D. Fei, Effect of Ball Milling on the Defeat of Few-Layer Graphene and Properties of Copper Matrix Composites, Acta. Metall. Sin. (Engl. Lett.), 2014, 05(v.27), p 201–207.
30.
go back to reference X. Ding and T. Fan, Research Progress of Graphene Reinforced Copper Matrix Composites, Therm. Process. Technol., 2020, 49(06), p 17–21. X. Ding and T. Fan, Research Progress of Graphene Reinforced Copper Matrix Composites, Therm. Process. Technol., 2020, 49(06), p 17–21.
31.
go back to reference H.G. Yue, L.H. Yao, X. Gao, S.L. Zhang, E. Guo, H. Zhang, X.Y. Lin and B. Wang, Effect of Ball-Milling and Graphene Contents on the Mechanical Properties and Fracture Mechanisms of Graphene Nanosheets Reinforced Copper Matrix Composites, J. Alloy. Compd., 2017, 69, p 1755–1762. H.G. Yue, L.H. Yao, X. Gao, S.L. Zhang, E. Guo, H. Zhang, X.Y. Lin and B. Wang, Effect of Ball-Milling and Graphene Contents on the Mechanical Properties and Fracture Mechanisms of Graphene Nanosheets Reinforced Copper Matrix Composites, J. Alloy. Compd., 2017, 69, p 1755–1762.
32.
go back to reference T. Varol and A. Canakci, Microstructure, Electrical Conductivity and Hardness of Multilayer Graphene/Copper Nanocomposites Synthesized by Flake Powder Metallurgy, Met. Mater. Int., 2015, 21(4), p 704–712.CrossRef T. Varol and A. Canakci, Microstructure, Electrical Conductivity and Hardness of Multilayer Graphene/Copper Nanocomposites Synthesized by Flake Powder Metallurgy, Met. Mater. Int., 2015, 21(4), p 704–712.CrossRef
33.
go back to reference X.Z. Kai, Z.Q. Li, G.L. Fan, G. Qiang, B.B. Xiong, W.L. Zhang, Y.S. Su, W.J. Lu, W.J. Moon and D. Zhang, Enhanced Strength and Ductility in Particulate-Reinforced Aluminum Matrix Composites Fabricated by Flake Powder Metallurgy, Mater. Sci. Eng. A, 2013, 587, p 46–53.CrossRef X.Z. Kai, Z.Q. Li, G.L. Fan, G. Qiang, B.B. Xiong, W.L. Zhang, Y.S. Su, W.J. Lu, W.J. Moon and D. Zhang, Enhanced Strength and Ductility in Particulate-Reinforced Aluminum Matrix Composites Fabricated by Flake Powder Metallurgy, Mater. Sci. Eng. A, 2013, 587, p 46–53.CrossRef
34.
go back to reference F.L. Wang, Y.P. Li, K. Wakoh, Y. Koizumi and A. Chiba, Cu-Ti-C Alloy with High Strength and High Electrical Conductivity Prepared by Two-Step Ball-Milling Processes, Mater. Des., 2014, 61, p 70–74.CrossRef F.L. Wang, Y.P. Li, K. Wakoh, Y. Koizumi and A. Chiba, Cu-Ti-C Alloy with High Strength and High Electrical Conductivity Prepared by Two-Step Ball-Milling Processes, Mater. Des., 2014, 61, p 70–74.CrossRef
35.
go back to reference B. Guo, M. Hu, et al. The Influence of Process Parameters on the Conductive Properties of Graphite/Copper Matrix Composites. Mater. Mech. Eng., 2008, 32, p 4-6+84. B. Guo, M. Hu, et al. The Influence of Process Parameters on the Conductive Properties of Graphite/Copper Matrix Composites. Mater. Mech. Eng., 2008, 32, p 4-6+84.
Metadata
Title
Effects of Ball Milling Times on Microstructure and Properties of Cu matrix Composites Reinforced with Graphene Oxide Nanosheets
Authors
K. X. Xu
P. Y. Guo
M. S. Song
H. Xue
L. Zhang
L. L. Dong
Y. S. Zhang
Publication date
30-11-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06459-9

Other articles of this Issue 5/2022

Journal of Materials Engineering and Performance 5/2022 Go to the issue

Premium Partners