Skip to main content
Top
Published in:

02-09-2024

Effects of negative hydroxyl ions at the SnO2/perovskite layer interface on the performance of perovskite solar cells

Authors: Mehdi Banihashemi, Alireza Kashani Nia

Published in: Journal of Computational Electronics | Issue 6/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work we studied the effects of negative hydroxyl ions at the SnO2/perovskite layer interface with respect to the performance of perovskite solar cells (PSCs). We considered a layer of 1 nm thickness, containing fixed negative ions, at the SnO2/perovskite layer interface. The density of the ions was set to 7 × 1019 cm−3 in our simulations. To maintain charge neutrality in the SnO2 electron transport layer (ETL), we calculated the number of negative ions in the 1-nm-thick layer and added the same number of positive ions to the remaining part of the ETL. According to our simulation results, the negative ions increased the internal potential drop, reducing the open-circuit voltage of the perovskite solar cell from 0.99 to 0.88 V. On the other hand, the negative non-mobile hydroxyl ions at the interface absorbed some of the mobile positive ions of the perovskite layer, which increased the hysteresis index from 0.177% to 0.707%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhu, P., Chen, C., Dai, J., Zhang, Y., Mao, R., Chen, S., Huang, J., Zhu, J.: Toward the commercialization of perovskite solar modules. Adv. Mater. 36(15), 2307357 (2024)CrossRef Zhu, P., Chen, C., Dai, J., Zhang, Y., Mao, R., Chen, S., Huang, J., Zhu, J.: Toward the commercialization of perovskite solar modules. Adv. Mater. 36(15), 2307357 (2024)CrossRef
2.
go back to reference Du, B., He, K., Tian, G., Che, X., Song, L.: Robust electron transport layers of SnO2 for efficient perovskite solar cells: recent advances and perspectives. J. Mater. Chem. C 11(40), 13625–13646 (2023)CrossRef Du, B., He, K., Tian, G., Che, X., Song, L.: Robust electron transport layers of SnO2 for efficient perovskite solar cells: recent advances and perspectives. J. Mater. Chem. C 11(40), 13625–13646 (2023)CrossRef
3.
go back to reference Park, S.Y., Zhu, K.: Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv. Mater. 34(27), 2110438 (2022)CrossRef Park, S.Y., Zhu, K.: Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv. Mater. 34(27), 2110438 (2022)CrossRef
4.
go back to reference Gong, J., Cui, Y., Li, F., Liu, M.: Progress in surface modification of SnO2 electron transport layers for stable perovskite solar cells. Small Sci. 3(6), 2200108 (2023)CrossRef Gong, J., Cui, Y., Li, F., Liu, M.: Progress in surface modification of SnO2 electron transport layers for stable perovskite solar cells. Small Sci. 3(6), 2200108 (2023)CrossRef
5.
go back to reference Jung, E.H., Chen, B., Bertens, K., Vafaie, M., Teale, S., Proppe, A., Hou, Y., Zhu, T., Zheng, C., Sargent, E.H.: Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 5(9), 2796–2801 (2020)CrossRef Jung, E.H., Chen, B., Bertens, K., Vafaie, M., Teale, S., Proppe, A., Hou, Y., Zhu, T., Zheng, C., Sargent, E.H.: Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 5(9), 2796–2801 (2020)CrossRef
6.
go back to reference Shen, J., Ge, X., Ge, Q., Li, N., Wang, Y., Liu, X., Tao, J., He, T., Yang, S.: Improvement of photovoltaic performance of perovskite solar cells by synergistic modulation of SnO2 and perovskite via interfacial modification. ACS Appl. Mater. & Interf. 16(19), 24748–24759 (2024)CrossRef Shen, J., Ge, X., Ge, Q., Li, N., Wang, Y., Liu, X., Tao, J., He, T., Yang, S.: Improvement of photovoltaic performance of perovskite solar cells by synergistic modulation of SnO2 and perovskite via interfacial modification. ACS Appl. Mater. & Interf. 16(19), 24748–24759 (2024)CrossRef
7.
go back to reference Jeon, Y.-S., Kang, D.-H., Kim, J.-H., Park, N.-G.: Stability and efficiency improvement of perovskite solar cells by surface hydroxyl defect passivation of SnO2 layer with 4-fluorothiophenol. J. Mater. Chem. A 11(7), 3673–3681 (2023)CrossRef Jeon, Y.-S., Kang, D.-H., Kim, J.-H., Park, N.-G.: Stability and efficiency improvement of perovskite solar cells by surface hydroxyl defect passivation of SnO2 layer with 4-fluorothiophenol. J. Mater. Chem. A 11(7), 3673–3681 (2023)CrossRef
8.
go back to reference Kim, S.Y., Cho, S.J., Byeon, S.E., He, X., Yoon, H.J.: Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv. Energy Mater. 10(44), 2002606 (2020)CrossRef Kim, S.Y., Cho, S.J., Byeon, S.E., He, X., Yoon, H.J.: Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv. Energy Mater. 10(44), 2002606 (2020)CrossRef
9.
go back to reference Bai, C., Dong, W., Cai, H., Zu, C., Yue, W., Li, H., Zhao, J., Huang, F., Cheng, Y.-B., Zhong, J.: Electrochemical reduction and ion injection of annealing-free SnO2 for high performance perovskite solar cells. Adv. Energy Mater. 13(26), 2300491 (2023)CrossRef Bai, C., Dong, W., Cai, H., Zu, C., Yue, W., Li, H., Zhao, J., Huang, F., Cheng, Y.-B., Zhong, J.: Electrochemical reduction and ion injection of annealing-free SnO2 for high performance perovskite solar cells. Adv. Energy Mater. 13(26), 2300491 (2023)CrossRef
10.
go back to reference Calado, P., Telford, A.M., Bryant, D., Li, X., Nelson, J., O’Regan, B.C., Barnes, P.R.F.: Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016)CrossRef Calado, P., Telford, A.M., Bryant, D., Li, X., Nelson, J., O’Regan, B.C., Barnes, P.R.F.: Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016)CrossRef
11.
go back to reference Tong, G., Ono, L.K., Liu, Y., Zhang, H., Bu, T., Qi, Y.: Up-scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules. Nano-Micro Lett. 13(1), 155 (2021)CrossRef Tong, G., Ono, L.K., Liu, Y., Zhang, H., Bu, T., Qi, Y.: Up-scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules. Nano-Micro Lett. 13(1), 155 (2021)CrossRef
12.
go back to reference van Reenen, S., Kemerink, M., Snaith, H.J.: Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 3808–3814 (2015)CrossRef van Reenen, S., Kemerink, M., Snaith, H.J.: Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 3808–3814 (2015)CrossRef
13.
go back to reference Chen, T., Sun, Z., Liang, M., Xue, S.: Correlating hysteresis phenomena with interfacial charge accumulation in perovskite solar cells. Phys. Chem. Chem. Phys. 22(1), 245–251 (2020)CrossRef Chen, T., Sun, Z., Liang, M., Xue, S.: Correlating hysteresis phenomena with interfacial charge accumulation in perovskite solar cells. Phys. Chem. Chem. Phys. 22(1), 245–251 (2020)CrossRef
14.
go back to reference Tumen-Ulzii, G., Matsushima, T., Klotz, D., Leyden, M.R., Wang, P., Qin, C., Lee, J.-W., Lee, S.-J., Yang, Y., Adachi, C.: Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer. Commun. Mater. 1(1), 31 (2020)CrossRef Tumen-Ulzii, G., Matsushima, T., Klotz, D., Leyden, M.R., Wang, P., Qin, C., Lee, J.-W., Lee, S.-J., Yang, Y., Adachi, C.: Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer. Commun. Mater. 1(1), 31 (2020)CrossRef
15.
go back to reference Courtier, N.E., Richardson, G., Foster, J.M.: A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells. Appl. Math. Model. 63, 329–348 (2018)MathSciNetCrossRef Courtier, N.E., Richardson, G., Foster, J.M.: A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells. Appl. Math. Model. 63, 329–348 (2018)MathSciNetCrossRef
16.
go back to reference Courtier, N.E., Cave, J.M., Foster, J.M., Walker, A.B., Richardson, G.: How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy Environ. Sci. 12(1), 396–409 (2019)CrossRef Courtier, N.E., Cave, J.M., Foster, J.M., Walker, A.B., Richardson, G.: How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy Environ. Sci. 12(1), 396–409 (2019)CrossRef
17.
go back to reference Courtier, N.E., Cave, J.M., Walker, A.B., Richardson, G., Foster, J.M.: IonMonger: a free and fast planar perovskite solar cell simulator with coupled ion vacancy and charge carrier dynamics. J. Comput. Electron. 18(4), 1435 (2019)CrossRef Courtier, N.E., Cave, J.M., Walker, A.B., Richardson, G., Foster, J.M.: IonMonger: a free and fast planar perovskite solar cell simulator with coupled ion vacancy and charge carrier dynamics. J. Comput. Electron. 18(4), 1435 (2019)CrossRef
18.
go back to reference Courtier, N.E., Foster, J.M., O’Kane, S.E.J., Walker, A.B., Richardson, G.: Systematic derivation of a surface polarisation model for planar perovskite solar cells. Eur. J. Appl. Math. 30, 427–457 (2019)MathSciNetCrossRef Courtier, N.E., Foster, J.M., O’Kane, S.E.J., Walker, A.B., Richardson, G.: Systematic derivation of a surface polarisation model for planar perovskite solar cells. Eur. J. Appl. Math. 30, 427–457 (2019)MathSciNetCrossRef
19.
go back to reference Cave, J.M., Courtier, N.E., Blakborn, I.A., Jones, T.W., Ghosh, D., Anderson, K.F., Lin, L., Dijkhoff, A.A., Wilson, G.J., Feron, K., Saiful Islam, M., Foster, J.M., Richardson, G., Walker, A.B.: Deducing transport properties of mobile vacancies from perovskite solar cell characteristics. J. Appl. Phys. 128(18), 184501 (2020)CrossRef Cave, J.M., Courtier, N.E., Blakborn, I.A., Jones, T.W., Ghosh, D., Anderson, K.F., Lin, L., Dijkhoff, A.A., Wilson, G.J., Feron, K., Saiful Islam, M., Foster, J.M., Richardson, G., Walker, A.B.: Deducing transport properties of mobile vacancies from perovskite solar cell characteristics. J. Appl. Phys. 128(18), 184501 (2020)CrossRef
20.
go back to reference Walter, D., Fell, A., Wu, Y., Duong, T., Barugkin, C., Wu, N., White, T.P., Weber, K.: Transient photovoltage in perovskite solar cells: interaction of trap-mediated recombination and migration of multiple ionic species. J. Phys. Chem. C 122, 11270–11281 (2018)CrossRef Walter, D., Fell, A., Wu, Y., Duong, T., Barugkin, C., Wu, N., White, T.P., Weber, K.: Transient photovoltage in perovskite solar cells: interaction of trap-mediated recombination and migration of multiple ionic species. J. Phys. Chem. C 122, 11270–11281 (2018)CrossRef
21.
go back to reference Sajedi Alvar, M., Blom, P.W.M., Wetzelaer, G.-J.A.H.: Device model for methylammonium lead iodide perovskite with experimentally validated ion dynamics. Adv. Electron. Mater. 6(6), 1900935 (2020)CrossRef Sajedi Alvar, M., Blom, P.W.M., Wetzelaer, G.-J.A.H.: Device model for methylammonium lead iodide perovskite with experimentally validated ion dynamics. Adv. Electron. Mater. 6(6), 1900935 (2020)CrossRef
22.
go back to reference Calado, P., Gelmetti, I., Hilton, B., Azzouzi, M., Nelson, J., Barnes, P.R.F.: Driftfusion: an open source code for simulating ordered semiconductor devices with mixed ionic-electronic conducting materials in one dimension. J. Comput. Electron. 21, 960–991 (2022)CrossRef Calado, P., Gelmetti, I., Hilton, B., Azzouzi, M., Nelson, J., Barnes, P.R.F.: Driftfusion: an open source code for simulating ordered semiconductor devices with mixed ionic-electronic conducting materials in one dimension. J. Comput. Electron. 21, 960–991 (2022)CrossRef
23.
go back to reference Huang, Y., Zhang, Y., Sun, J., Wang, X., Sun, J., Chen, Q., Pan, C., Zhou, H.: The exploration of carrier behavior in the inverted mixed perovskite single-crystal solar cells. Adv. Mater. Interf. 5(14), 1800224 (2018)CrossRef Huang, Y., Zhang, Y., Sun, J., Wang, X., Sun, J., Chen, Q., Pan, C., Zhou, H.: The exploration of carrier behavior in the inverted mixed perovskite single-crystal solar cells. Adv. Mater. Interf. 5(14), 1800224 (2018)CrossRef
24.
go back to reference Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116(5), 054505 (2014)CrossRef Minemoto, T., Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116(5), 054505 (2014)CrossRef
25.
go back to reference Abadi, N.M., Banihashemi, M., Nia, A.K.: Effects of HTL/ETL properties on the performance of (FAPbI3) 0.85 (MAPbBr 3) 0.15 perovskite solar cells. J. Phys. D Appl. Phys. 54(33), 334001 (2021)CrossRef Abadi, N.M., Banihashemi, M., Nia, A.K.: Effects of HTL/ETL properties on the performance of (FAPbI3) 0.85 (MAPbBr 3) 0.15 perovskite solar cells. J. Phys. D Appl. Phys. 54(33), 334001 (2021)CrossRef
26.
go back to reference Weber, S.A.L., Hermes, I.M., Turren-Cruz, S.-H., Gort, C., Bergmann, V.W., Gilson, L., Hagfeldt, A., Graetzel, M., Tress, W., Berger, R.: How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energy Environ. Sci. 11(9), 2404–2413 (2018)CrossRef Weber, S.A.L., Hermes, I.M., Turren-Cruz, S.-H., Gort, C., Bergmann, V.W., Gilson, L., Hagfeldt, A., Graetzel, M., Tress, W., Berger, R.: How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energy Environ. Sci. 11(9), 2404–2413 (2018)CrossRef
27.
go back to reference Zhang, D., Xu, P., Wu, T., Ou, Y., Yang, X., Sun, A., Cui, B., Sun, H., Hua, Y.: Cyclopenta[hi]aceanthrylene-based dopant-free hole-transport material for organic–inorganic hybrid and all-inorganic perovskite solar cells. J. Mater. Chem. A 7(10), 5221–5226 (2019)CrossRef Zhang, D., Xu, P., Wu, T., Ou, Y., Yang, X., Sun, A., Cui, B., Sun, H., Hua, Y.: Cyclopenta[hi]aceanthrylene-based dopant-free hole-transport material for organic–inorganic hybrid and all-inorganic perovskite solar cells. J. Mater. Chem. A 7(10), 5221–5226 (2019)CrossRef
28.
go back to reference Sun, X., Xue, Q., Zhu, Z., Xiao, Q., Jiang, K., Yip, H.-L., Yan, H., Li, Z.: Fluoranthene-based dopant-free hole transporting materials for efficient perovskite solar cells. Chem. Sci. 9(10), 2698–2704 (2018)CrossRef Sun, X., Xue, Q., Zhu, Z., Xiao, Q., Jiang, K., Yip, H.-L., Yan, H., Li, Z.: Fluoranthene-based dopant-free hole transporting materials for efficient perovskite solar cells. Chem. Sci. 9(10), 2698–2704 (2018)CrossRef
29.
go back to reference Zhao, P., Lin, Z., Wang, J., Yue, M., Su, J., Zhang, J., Chang, J., Hao, Y.: Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer. ACS Appl. Energy Mater. 2(6), 4504–4512 (2019)CrossRef Zhao, P., Lin, Z., Wang, J., Yue, M., Su, J., Zhang, J., Chang, J., Hao, Y.: Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer. ACS Appl. Energy Mater. 2(6), 4504–4512 (2019)CrossRef
30.
go back to reference Sakthivel, P., Foo, S., Thambidurai, M., Harikesh, P.C., Mathews, N., Yuvakkumar, R., Ravi, G., Dang, C.: Efficient and stable planar perovskite solar cells using co-doped tin oxide as the electron transport layer. J. Power. Sources 471, 228443 (2020)CrossRef Sakthivel, P., Foo, S., Thambidurai, M., Harikesh, P.C., Mathews, N., Yuvakkumar, R., Ravi, G., Dang, C.: Efficient and stable planar perovskite solar cells using co-doped tin oxide as the electron transport layer. J. Power. Sources 471, 228443 (2020)CrossRef
31.
go back to reference Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M.K., Maier, J., Grätzel, M.: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014)CrossRef Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M.K., Maier, J., Grätzel, M.: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014)CrossRef
32.
go back to reference Otoufi, M.K., Ranjbar, M., Kermanpur, A., Taghavinia, N., Minbashi, M., Forouzandeh, M., Ebadi, F.: Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers. Sol. Energy 208, 697–707 (2020)CrossRef Otoufi, M.K., Ranjbar, M., Kermanpur, A., Taghavinia, N., Minbashi, M., Forouzandeh, M., Ebadi, F.: Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers. Sol. Energy 208, 697–707 (2020)CrossRef
33.
go back to reference Shen, H., Jacobs, D.A., Wu, Y., Duong, T., Peng, J., Wen, X., Fu, X., Karuturi, S.K., White, T.P., Weber, K., Catchpole, K.R.: Inverted hysteresis in CH3NH3PbI3 solar cells: role of stoichiometry and band alignment. J. Phys. Chem. Lett. 8(12), 2672–2680 (2017)CrossRef Shen, H., Jacobs, D.A., Wu, Y., Duong, T., Peng, J., Wen, X., Fu, X., Karuturi, S.K., White, T.P., Weber, K., Catchpole, K.R.: Inverted hysteresis in CH3NH3PbI3 solar cells: role of stoichiometry and band alignment. J. Phys. Chem. Lett. 8(12), 2672–2680 (2017)CrossRef
34.
go back to reference Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., Snaith, H.J.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014)CrossRef Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., Snaith, H.J.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014)CrossRef
35.
go back to reference Raoui, Y., Ez-Zahraouy, H., Kazim, S., Ahmad, S.: Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights. J. Energy Chem. 54, 822–829 (2021)CrossRef Raoui, Y., Ez-Zahraouy, H., Kazim, S., Ahmad, S.: Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights. J. Energy Chem. 54, 822–829 (2021)CrossRef
36.
go back to reference Futscher, M.H., Lee, J.M., McGovern, L., Muscarella, L.A., Wang, T., Haider, M.I., Fakharuddin, A., Schmidt-Mende, L., Ehrler, B.: Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements. Mater. Horiz. 6(7), 1497–1503 (2019)CrossRef Futscher, M.H., Lee, J.M., McGovern, L., Muscarella, L.A., Wang, T., Haider, M.I., Fakharuddin, A., Schmidt-Mende, L., Ehrler, B.: Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements. Mater. Horiz. 6(7), 1497–1503 (2019)CrossRef
37.
go back to reference Lakhdar, N., Hima, A.: Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 99, 109517 (2020)CrossRef Lakhdar, N., Hima, A.: Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 99, 109517 (2020)CrossRef
38.
go back to reference Habisreutinger, S.N., Noel, N.K., Snaith, H.J.: Hysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cells. ACS Energy Lett. 3(10), 2472–2476 (2018)CrossRef Habisreutinger, S.N., Noel, N.K., Snaith, H.J.: Hysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cells. ACS Energy Lett. 3(10), 2472–2476 (2018)CrossRef
39.
go back to reference Correa Baena, J.P., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T.J., Srimath Kandada, A.R., Zakeeruddin, S.M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Grätzel, M., Hagfeldt, A.: Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8(10), 2928–2934 (2015)CrossRef Correa Baena, J.P., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T.J., Srimath Kandada, A.R., Zakeeruddin, S.M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Grätzel, M., Hagfeldt, A.: Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8(10), 2928–2934 (2015)CrossRef
40.
go back to reference Aygüler, M.F., Hufnagel, A.G., Rieder, P., Wussler, M., Jaegermann, W., Bein, T., Dyakonov, V., Petrus, M.L., Baumann, A., Docampo, P.: Influence of fermi level alignment with tin oxide on the hysteresis of perovskite solar cells. ACS Appl. Mater. Interf. 10(14), 11414–11419 (2018)CrossRef Aygüler, M.F., Hufnagel, A.G., Rieder, P., Wussler, M., Jaegermann, W., Bein, T., Dyakonov, V., Petrus, M.L., Baumann, A., Docampo, P.: Influence of fermi level alignment with tin oxide on the hysteresis of perovskite solar cells. ACS Appl. Mater. Interf. 10(14), 11414–11419 (2018)CrossRef
Metadata
Title
Effects of negative hydroxyl ions at the SnO2/perovskite layer interface on the performance of perovskite solar cells
Authors
Mehdi Banihashemi
Alireza Kashani Nia
Publication date
02-09-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 6/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02212-2