Skip to main content
Top
Published in:

12-03-2019

Effects of Nozzle Radial Position, Separation Angle, and Gas Flow Partitioning on the Mixing, Eye Area, and Wall Shear Stress in Ladles Fitted with Dual Plugs

Authors: A. N. Conejo, Rishikesh Mishra, D. Mazumdar

Published in: Metallurgical and Materials Transactions B | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mixing time, slag eye area, and wall shear stress in a ladle fitted with dual plugs have been studied as a function of operating variables, namely, gas flow rate, radial nozzle position, separation angle between nozzles and flow rate partitioning. While the mixing time and slag eye area have been experimentally investigated in a scaled water model (with and without a top slag layer), the shear stress on the vessel wall has been studied computationally via a RANS-based turbulent, three-dimensional coupled Eulerian–Lagrangian (VOF-DPM), multiphase flow model. Experimental and computational results have indicated that the mixing, eye area, and wall shear stress depend on the gas flow rate, i.e., while mixing efficiency increases with the increasing gas flow rate, the slag eye area, and wall shear stress, in contrast, become more pronounced with the increasing gas flow, leading to an undesirable operating regime. The radial nozzle position, separation angle between the nozzles and flow rate partitioning at any given flow rate also influence the ladle process performance, influencing the mixing, eye area, and wall shear stress, albeit to a varied degree. Within the range of operating conditions studied, an expected inverse correspondence between mixing time and shear behavior was observed. Experimental and computational results in conjunction have indicated that the best arrangement of porous plugs or gas injection nozzles for superior ladle process performance is dependent on the gas flow rate and is specific to the desired objective (i.e., decreasing the mixing time, or slag eye area and wall shear stress). Hence, a unique gas injection practice cannot and should not be suggested as the optimum for ladle metallurgy in steelmaking. Nevertheless, if the mixing time is the parameter of primary interest, a nozzle configuration with equal flow partitioning (1:1) between the nozzles and identical nozzle radial positions (0.7R/0.7R, 45 deg) should suffice for both low and high gas flow rates. In contrast, a nonidentical nozzle radial position (0.7R/0.5R, 90 deg) and an unequal gas flow rate per nozzle (1:3) appear preferable if both ladle eye and shear stresses, rather than mixing, are the issues of concern.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Identical nozzle radial position indicates that both nozzles are equidistant from the center of a ladle. Therefore, if R is the radius of a ladle, r is the nozzle radial position or, X = r/R is the fractional or nondimensional radial position, then the nozzle radial position is r = XR, where X = 0 represents the center of the ladle and X = 1, represents the ladle wall.
 
Literature
1.
go back to reference D. Mazumdar, P. Dhandapani and R. Sarvanakumar: ISIJ Int., 2017, vol. 57, pp. 286–295.CrossRef D. Mazumdar, P. Dhandapani and R. Sarvanakumar: ISIJ Int., 2017, vol. 57, pp. 286–295.CrossRef
2.
go back to reference N.J. Themelis and P. Goyal: Canad. Met. Quart., 1983, vol. 22, pp. 313-320.CrossRef N.J. Themelis and P. Goyal: Canad. Met. Quart., 1983, vol. 22, pp. 313-320.CrossRef
3.
go back to reference J.K Brimacombe: in Int. Symp. Injection in process metallurgy, T. Lehner et al., eds., TMS, USA, 1991, pp. 13-42. J.K Brimacombe: in Int. Symp. Injection in process metallurgy, T. Lehner et al., eds., TMS, USA, 1991, pp. 13-42.
4.
5.
6.
go back to reference A.N. Conejo and S. Kitamura: Bull. Adv. Matls. Proc. Building IMRAM, 2009, vol. 65, pp. 26-35. A.N. Conejo and S. Kitamura: Bull. Adv. Matls. Proc. Building IMRAM, 2009, vol. 65, pp. 26-35.
7.
go back to reference A.N. Conejo and S. Kitamura: Bull. Adv. Matls. Proc. Building IMRAM, 2009, vol. 65, pp. 36-46. A.N. Conejo and S. Kitamura: Bull. Adv. Matls. Proc. Building IMRAM, 2009, vol. 65, pp. 36-46.
8.
go back to reference G. Irons, A. Senguttuvan and K. Krishnapisharody: ISIJ Int., 2015, vol. 55, pp. 1–6CrossRef G. Irons, A. Senguttuvan and K. Krishnapisharody: ISIJ Int., 2015, vol. 55, pp. 1–6CrossRef
9.
go back to reference N. Conejo: European Steel Technology and Application Days, 2017, June 26 – July 1, Vienna, Austria. N. Conejo: European Steel Technology and Application Days, 2017, June 26 – July 1, Vienna, Austria.
10.
go back to reference K. Nakanishi, T. Fujii and J. Szekely: Ironmaking and Steelmaking, 1975, vol. 2, pp. 193-197. K. Nakanishi, T. Fujii and J. Szekely: Ironmaking and Steelmaking, 1975, vol. 2, pp. 193-197.
11.
go back to reference S. Asai, T. Okamoto, J. He and I. Muchi: Trans. ISIJ, 1983, vol. 23, pp. 43-50.CrossRef S. Asai, T. Okamoto, J. He and I. Muchi: Trans. ISIJ, 1983, vol. 23, pp. 43-50.CrossRef
13.
go back to reference S. Joo and R. I. L. Guthrie: Metall. Trans. B, 1992. vol. 23B, pp. 765-778.CrossRef S. Joo and R. I. L. Guthrie: Metall. Trans. B, 1992. vol. 23B, pp. 765-778.CrossRef
14.
go back to reference M.-Y. Zhu, T. Inomoto, I. Sawada and T.-C. Hsiao: ISIJ Int., 1995, vol. 35, pp. 472-479.CrossRef M.-Y. Zhu, T. Inomoto, I. Sawada and T.-C. Hsiao: ISIJ Int., 1995, vol. 35, pp. 472-479.CrossRef
15.
go back to reference L. Zhang, S. Taniguchi, K. Cai and Y. Qu: Steel Res., 2000, vol. 71, pp. 325-332.CrossRef L. Zhang, S. Taniguchi, K. Cai and Y. Qu: Steel Res., 2000, vol. 71, pp. 325-332.CrossRef
16.
go back to reference M.A.C. Terrazas and A.N. Conejo. Metall. and Matls. Trans. B, 2015, Vol. 46, pp.711-718.CrossRef M.A.C. Terrazas and A.N. Conejo. Metall. and Matls. Trans. B, 2015, Vol. 46, pp.711-718.CrossRef
17.
go back to reference L. W. Helle: J. South Afr. Inst. Min. Met., 1981, pp. 329-337. L. W. Helle: J. South Afr. Inst. Min. Met., 1981, pp. 329-337.
18.
19.
go back to reference C. Chen, G. Cheng, H. Sun, Z. Hou, X. Wang and J. Zhang: Steel Res. Int., 2012, vol. 83, pp. 1141-1151.CrossRef C. Chen, G. Cheng, H. Sun, Z. Hou, X. Wang and J. Zhang: Steel Res. Int., 2012, vol. 83, pp. 1141-1151.CrossRef
20.
21.
go back to reference Chattopadhyay, K.; Sengupta A.; Ajmani S.; Lenka, S.; Singh, V: Ironmaking and steelmaking, 2009, vol. 36, pp. 537-542.CrossRef Chattopadhyay, K.; Sengupta A.; Ajmani S.; Lenka, S.; Singh, V: Ironmaking and steelmaking, 2009, vol. 36, pp. 537-542.CrossRef
22.
go back to reference L. Jardón, A. Amaro, A. N. Conejo, C. González and M. A. Ramírez: Matls. and Manuf. Proc., 2018, vol. 33, pp. 882-890.CrossRef L. Jardón, A. Amaro, A. N. Conejo, C. González and M. A. Ramírez: Matls. and Manuf. Proc., 2018, vol. 33, pp. 882-890.CrossRef
23.
24.
25.
go back to reference R. Singh, D. Mazumdar and A. K. Ray: ISIJ Int., 2008, vol. 48, pp. 1033–1035.CrossRef R. Singh, D. Mazumdar and A. K. Ray: ISIJ Int., 2008, vol. 48, pp. 1033–1035.CrossRef
26.
27.
28.
go back to reference J.F. Davidson and B.O.G. Schüler, Trans. Inst. Chem. Eng., 1960, Vol. 38, pp. 385-42 J.F. Davidson and B.O.G. Schüler, Trans. Inst. Chem. Eng., 1960, Vol. 38, pp. 385-42
29.
31.
32.
go back to reference T-H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu: Computers & Fluids, 1995, vol. 24, pp. 227-238.CrossRef T-H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu: Computers & Fluids, 1995, vol. 24, pp. 227-238.CrossRef
33.
go back to reference F. M. White: Fluid Mechanics, 7th Edition, McGraw Hill, NY, 2010, p. 467. F. M. White: Fluid Mechanics, 7th Edition, McGraw Hill, NY, 2010, p. 467.
34.
go back to reference S. Chatterjee, D. Li, and K. Chattopadhyay: Metall. and Matls. Trans. B, 2018, vol. 49, pp 756–766.CrossRef S. Chatterjee, D. Li, and K. Chattopadhyay: Metall. and Matls. Trans. B, 2018, vol. 49, pp 756–766.CrossRef
35.
36.
go back to reference D. Mazumdar: Steel Res. Intl., 2018, “in press” D. Mazumdar: Steel Res. Intl., 2018, “in press”
37.
38.
go back to reference D. Mazumdar, H. Nakajima and R. Guthrie, Metall. Trans. B, 1988, vol. 19B, pp 507-510.CrossRef D. Mazumdar, H. Nakajima and R. Guthrie, Metall. Trans. B, 1988, vol. 19B, pp 507-510.CrossRef
39.
go back to reference T. Haiyan, G. Xiaochen, W. Guanghui and W. Yong: ISIJ Int., 2016, vol. 56, pp. 2161-2170.CrossRef T. Haiyan, G. Xiaochen, W. Guanghui and W. Yong: ISIJ Int., 2016, vol. 56, pp. 2161-2170.CrossRef
Metadata
Title
Effects of Nozzle Radial Position, Separation Angle, and Gas Flow Partitioning on the Mixing, Eye Area, and Wall Shear Stress in Ladles Fitted with Dual Plugs
Authors
A. N. Conejo
Rishikesh Mishra
D. Mazumdar
Publication date
12-03-2019
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 3/2019
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-019-01546-8

Premium Partners