Skip to main content
Top

2020 | OriginalPaper | Chapter

Effects of Precursor Concentration on the Surface Morphology and Electrocatalytic Performance of Ti/IrO2–RuO2–SiO2 Anode for Oxygen Evolution Reaction

Authors : Bao Liu, Shuo Wang, Qiankun Jing, Chengyan Wang

Published in: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Oxygen evolution reaction (OER) as a counter reaction plays a key role in metal electrowinning. The development of an efficient, long-lived and low-cost anode for OER is of increasingly significance for metal electrowinning. IrO2–RuO2–SiO2 ternary oxide film coated on titanium substrate was prepared using sol-gel route, followed by thermal decomposition method. The effects of precursor concentration on the surface morphology and electrocatalytic properties of Ti/IrO2–RuO2–SiO2 anode were investigated by physical characterization and electrochemical measurements. It was found that the crystallinity of the oxide coating decreased with increasing precursor concentration. Increasing precursor concentration increased the amount of cracks of the oxide coating. The electrocatalytic activity of the prepared anode improved, while the electrocatalytic stability decreased with the increase in precursor concentration. Considering the electrocatalytic activity and stability, precursor concentration of 0.2–0.3 mol L−1 is most suitable for the preparation of the Ti/IrO2–RuO2–SiO2 anode.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Marshall AT, Sunde S, Tsypkin M et al (2007) Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode. Int J Hydrogen Energ 32:2320–2324CrossRef Marshall AT, Sunde S, Tsypkin M et al (2007) Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode. Int J Hydrogen Energ 32:2320–2324CrossRef
2.
go back to reference Marshall A, Borresen B, Hagen G et al (2006) Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalysts. Russ J Electrochem 42:1134–1140CrossRef Marshall A, Borresen B, Hagen G et al (2006) Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalysts. Russ J Electrochem 42:1134–1140CrossRef
3.
go back to reference Siracusano S, Baglio V, Di Blasi A et al (2010) Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst. Int. J. Hydrogen Energ 35:5558–5568CrossRef Siracusano S, Baglio V, Di Blasi A et al (2010) Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst. Int. J. Hydrogen Energ 35:5558–5568CrossRef
4.
go back to reference Xu W, Haarberg GM, Sunde S et al (2017) Calcination temperature dependent catalytic activity and stability of IrO2–Ta2O5 anodes for oxygen evolution reaction in aqueous sulfate electrolytes. J Electrochem Soc 164:F895–F900CrossRef Xu W, Haarberg GM, Sunde S et al (2017) Calcination temperature dependent catalytic activity and stability of IrO2–Ta2O5 anodes for oxygen evolution reaction in aqueous sulfate electrolytes. J Electrochem Soc 164:F895–F900CrossRef
5.
go back to reference Hu JM, Meng HM, Zhang JQ et al (2002) Degradation mechanism of long service life Ti/IrO2–Ta2O5 oxide anodes in sulphuric acid. Corros Sci 44:1655–1668CrossRef Hu JM, Meng HM, Zhang JQ et al (2002) Degradation mechanism of long service life Ti/IrO2–Ta2O5 oxide anodes in sulphuric acid. Corros Sci 44:1655–1668CrossRef
6.
go back to reference Hoseinieh SM, Ashrafizadeh F (2013) Influence of electrolyte composition on deactivation mechanism of a Ti/Ru0.25Ir0.25Ti0.5O2 electrode. Ionics 19:113–125CrossRef Hoseinieh SM, Ashrafizadeh F (2013) Influence of electrolyte composition on deactivation mechanism of a Ti/Ru0.25Ir0.25Ti0.5O2 electrode. Ionics 19:113–125CrossRef
7.
go back to reference Nguyen TD, Scherer GG, Xu ZJ (2016) A facile synthesis of size-controllable IrO2 and RuO2 nanoparticles for the oxygen evolution reaction. Electrocatalysis 7:420–427CrossRef Nguyen TD, Scherer GG, Xu ZJ (2016) A facile synthesis of size-controllable IrO2 and RuO2 nanoparticles for the oxygen evolution reaction. Electrocatalysis 7:420–427CrossRef
8.
go back to reference Audichon T, Mayousse E, Morisset S et al (2014) Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by solar profile. Int J Hydrogen Energ 39:16785–16796CrossRef Audichon T, Mayousse E, Morisset S et al (2014) Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by solar profile. Int J Hydrogen Energ 39:16785–16796CrossRef
9.
go back to reference Zhao Y, Hernandez-Pagan EA, Vargas-Barbosa NM et al (2011) A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity. J Phys Chem Lett 2:402–406CrossRef Zhao Y, Hernandez-Pagan EA, Vargas-Barbosa NM et al (2011) A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity. J Phys Chem Lett 2:402–406CrossRef
10.
go back to reference Kadakia K, Datta MK, Velikokhatnyi OI et al (2012) Novel (Ir, Sn, Nb)O2 anode electrocatalysts with reduced noble metal content for PEM based water electrolysis. Int J Hydrogen Energ 37:3001–3013CrossRef Kadakia K, Datta MK, Velikokhatnyi OI et al (2012) Novel (Ir, Sn, Nb)O2 anode electrocatalysts with reduced noble metal content for PEM based water electrolysis. Int J Hydrogen Energ 37:3001–3013CrossRef
11.
go back to reference Zhang JJ, Hu JM, Zhang JQ et al (2011) IrO2–SiO2 binary oxide films: geometric or kinetic interpretation of the improved electrocatalytic activity for the oxygen evolution reaction. Int J Hydrogen Energ 36:5218–5226CrossRef Zhang JJ, Hu JM, Zhang JQ et al (2011) IrO2–SiO2 binary oxide films: geometric or kinetic interpretation of the improved electrocatalytic activity for the oxygen evolution reaction. Int J Hydrogen Energ 36:5218–5226CrossRef
12.
go back to reference Yan ZW, Zhang HM, Feng ZQ et al (2017) Promotion of in situ TiNx interlayer on morphology and electrochemical properties of titanium based IrO2–Ta2O5 coated anode. J Alloys Compd 708:1081–1088CrossRef Yan ZW, Zhang HM, Feng ZQ et al (2017) Promotion of in situ TiNx interlayer on morphology and electrochemical properties of titanium based IrO2–Ta2O5 coated anode. J Alloys Compd 708:1081–1088CrossRef
13.
go back to reference Nijjer S, Thonstad J, Haarberg GM (2001) Cyclic and linear voltammetry on Ti/IrO2–Ta2O5–MnOx electrodes in sulfuric acid containing Mn2+ ions. Electrochim Acta 46:3503–3508CrossRef Nijjer S, Thonstad J, Haarberg GM (2001) Cyclic and linear voltammetry on Ti/IrO2–Ta2O5–MnOx electrodes in sulfuric acid containing Mn2+ ions. Electrochim Acta 46:3503–3508CrossRef
14.
go back to reference Chen XM, Chen GH (2005) Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution. Electrochim Acta 50:4155–4159CrossRef Chen XM, Chen GH (2005) Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution. Electrochim Acta 50:4155–4159CrossRef
15.
go back to reference Ye ZG, Meng HM, Sun DB (2008) New degradation mechanism of Ti/IrO2–MnO2 anode for oxygen evolution in 0.5 M H2SO4 solution. Electrochim Acta 53:5639–5643CrossRef Ye ZG, Meng HM, Sun DB (2008) New degradation mechanism of Ti/IrO2–MnO2 anode for oxygen evolution in 0.5 M H2SO4 solution. Electrochim Acta 53:5639–5643CrossRef
16.
go back to reference Iwakura C, Sakamoto K (1985) Effect of active layer composition on the service life of (SnO2 and RuO2)-coated Ti electrodes in sulfuric acid solution. J Electrochem Soc 132:2420–2423CrossRef Iwakura C, Sakamoto K (1985) Effect of active layer composition on the service life of (SnO2 and RuO2)-coated Ti electrodes in sulfuric acid solution. J Electrochem Soc 132:2420–2423CrossRef
17.
go back to reference Mazhari Abbasi H, Jafarzadeh K, Mirali SM (2010) An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2 + Ta2O5 coating in an OER application. J Electroanal Chem 648:119–127CrossRef Mazhari Abbasi H, Jafarzadeh K, Mirali SM (2010) An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2 + Ta2O5 coating in an OER application. J Electroanal Chem 648:119–127CrossRef
18.
go back to reference Liu B, Wang C, Chen Y (2018) Surface determination and electrochemical behavior of IrO2–RuO2–SiO2 ternary oxide coatings in oxygen evolution reaction application. Electrochim Acta 264:350–357CrossRef Liu B, Wang C, Chen Y (2018) Surface determination and electrochemical behavior of IrO2–RuO2–SiO2 ternary oxide coatings in oxygen evolution reaction application. Electrochim Acta 264:350–357CrossRef
19.
go back to reference Ye ZG, Huang GB, Liu GW et al (2014) Influence of preparation process on electrocatalytic activity of Ti/IrO2–MnO2 anodes for oxygen evolution in 0.5 M Na2SO4 solution. Mater. Res. Innov 18:440–446 Ye ZG, Huang GB, Liu GW et al (2014) Influence of preparation process on electrocatalytic activity of Ti/IrO2–MnO2 anodes for oxygen evolution in 0.5 M Na2SO4 solution. Mater. Res. Innov 18:440–446
20.
go back to reference Reier T, Teschner D, Lunkenbein T et al (2014) Electrocatalytic oxygen evolution on iridium oxide: uncovering catalyst-substrate interactions and active iridium oxide species. J Electrochem Soc 161:F876–F882CrossRef Reier T, Teschner D, Lunkenbein T et al (2014) Electrocatalytic oxygen evolution on iridium oxide: uncovering catalyst-substrate interactions and active iridium oxide species. J Electrochem Soc 161:F876–F882CrossRef
21.
go back to reference Lee HW, Kim H (2011) Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions. Catal Commun 12:408–411CrossRef Lee HW, Kim H (2011) Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions. Catal Commun 12:408–411CrossRef
22.
go back to reference Roginskaya YE, Varlamova TV, Goldstein MD et al (1991) Formation, structure and electrochemical properties of IrO2–RuO2 oxide electrodes. J Mat Chem Phys 30:101–113CrossRef Roginskaya YE, Varlamova TV, Goldstein MD et al (1991) Formation, structure and electrochemical properties of IrO2–RuO2 oxide electrodes. J Mat Chem Phys 30:101–113CrossRef
23.
go back to reference Burke LD, Murphy OJ (1979) Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes. J Electroanal Chem 96:19–27CrossRef Burke LD, Murphy OJ (1979) Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes. J Electroanal Chem 96:19–27CrossRef
24.
go back to reference Xu W, Tayal J, Basu S et al (2011) Nano-crystalline RuxSn1−xO2 powder catalysts for oxygen evolution reaction in proton exchange membrane water electrolysers. Int J Hydrogen Energ 36:14796–14804CrossRef Xu W, Tayal J, Basu S et al (2011) Nano-crystalline RuxSn1−xO2 powder catalysts for oxygen evolution reaction in proton exchange membrane water electrolysers. Int J Hydrogen Energ 36:14796–14804CrossRef
25.
go back to reference Audichon T, Morisset S, Napporn TW et al (2015) Effect of adding CeO2 to RuO2–IrO2 mixed nanocatalysts: activity towards the oxygen evolution reaction and stability in acidic media. ChemElectroChem 2:1128–1137CrossRef Audichon T, Morisset S, Napporn TW et al (2015) Effect of adding CeO2 to RuO2–IrO2 mixed nanocatalysts: activity towards the oxygen evolution reaction and stability in acidic media. ChemElectroChem 2:1128–1137CrossRef
26.
go back to reference Ardizzone S, Fregonara G, Trasatt S (1990) Inner and outer active surface of RuO2 electrodes. Electrochim Acta 35:263–267CrossRef Ardizzone S, Fregonara G, Trasatt S (1990) Inner and outer active surface of RuO2 electrodes. Electrochim Acta 35:263–267CrossRef
27.
go back to reference Ye ZG, Meng HM, Sun DB (2008) New degradation mechanism of Ti/IrO2–MnO2 anode for oxygen evolution in 0.5 M H2SO4 solution. Electrochim Acta 53:5639–5643CrossRef Ye ZG, Meng HM, Sun DB (2008) New degradation mechanism of Ti/IrO2–MnO2 anode for oxygen evolution in 0.5 M H2SO4 solution. Electrochim Acta 53:5639–5643CrossRef
28.
go back to reference Martelli GN, Ornelas R, Faita G (1994) Deactivation mechanisms of oxygen evolving anodes at high current densities. Electrochim Acta 39:1551–1558CrossRef Martelli GN, Ornelas R, Faita G (1994) Deactivation mechanisms of oxygen evolving anodes at high current densities. Electrochim Acta 39:1551–1558CrossRef
29.
go back to reference Cherevko S, Reier T, Zeradjanin AR et al (2014) Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem Commun 48:81–85CrossRef Cherevko S, Reier T, Zeradjanin AR et al (2014) Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem Commun 48:81–85CrossRef
30.
go back to reference Gorodetskii V, Neburchilov V (2005) Titanium anodes with active coatings based on iridium oxides: the corrosion resistance and electrochemical behavior of anodes coated by mixed iridium, ruthenium, and titanium oxides. Russ J Electrochem 41:971–978CrossRef Gorodetskii V, Neburchilov V (2005) Titanium anodes with active coatings based on iridium oxides: the corrosion resistance and electrochemical behavior of anodes coated by mixed iridium, ruthenium, and titanium oxides. Russ J Electrochem 41:971–978CrossRef
Metadata
Title
Effects of Precursor Concentration on the Surface Morphology and Electrocatalytic Performance of Ti/IrO2–RuO2–SiO2 Anode for Oxygen Evolution Reaction
Authors
Bao Liu
Shuo Wang
Qiankun Jing
Chengyan Wang
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36296-6_118

Premium Partners