Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Journal of Electronic Materials 4/2021

23-01-2021 | Original Research Article

Effects of RF Magnetron Sputtering Deposition Power on Crystallinity and Thermoelectric Properties of Antimony Telluride and Bismuth Telluride Thin Films on Flexible Substrates

Authors: Farbod Amirghasemi, Sam Kassegne

Published in: Journal of Electronic Materials | Issue 4/2021

Login to get access
share
SHARE

Abstract

Thermoelectric materials carry significant promise for self-powering future generations of unattended microdevices and wearable devices. The current increased interest in such devices highlights the need for research to provide understanding of the basic material properties of thermoelectric materials, specifically in thin-film form, deposited on flexible polymer substrates. In this study, the surface topography, crystalline structure, and electrical properties of sputtered thin films of two of the most common thermoelectric materials, i.e., antimony telluride (Sb2Te3) and bismuth telluride (Bi2Te3), supported on silicon and polymer substrates were investigated. The study focuses on determining the effect of the sputtering power and underlying substrate on the crystal structure formation as well as grain size of the resulting thin film. Radiofrequency (RF) magnetron sputtering with power levels from 50 W to 200 W was used to deposit these layers on several test structures. The results demonstrate that increasing the RF sputtering power resulted in (i) an increase in the crystalline size (from 0.48 nm to 29.66 nm for Sb2Te3 and from 10.60 nm to 20.29 nm for Bi2Te3), (ii) a significant increase in the content of tellurium (Te) in the Sb2Te3 and Bi2Te3 thin films, (iii) an order-of-magnitude increase in the electrical conductivity of the Bi2Te3 thin film fabricated on silicon wafer, and (iv) a 150% increase in the Seebeck coefficient for both Bi2Te3 and Sb2Te3 samples. Furthermore, surface roughness analysis showed that deposition on polyimide substrate modestly increased the surface roughness (Ra), from 6.59 nm to 9.91 nm for Bi2Te3 and from 12.46 nm to 15.41 nm for Sb2Te3. The electrical resistivity of Bi2Te3 thin films on polyimide was found to be 2.72 × 10−3 Ω m, compared with 1.58 × 10−3 Ω m on silicon substrate, while for Sb2Te3,, the electrical resistivity on polyimide substrate increased to 580 × 10−3 Ω m as compared with 145 × 10−3 Ω m on silicon substrate. Taken together, the results of this work demonstrate that the use of high deposition power during RF sputtering of Sb2Te3 and Bi2Te3 thin films results in significant improvements in their crystallinity, conductivity, and Seebeck coefficient, which are key material properties of great importance for thermoelectric materials.
Appendix
Available only for authorised users
Literature
4.
go back to reference C.S. Kim, H.M. Yang, J. Lee, G.S. Lee, H. Choi, Y.J. Kim, S.H. Lim, S.H. Cho, and B.J. Cho, ACS Energy Lett. 3, 501 (2018). CrossRef C.S. Kim, H.M. Yang, J. Lee, G.S. Lee, H. Choi, Y.J. Kim, S.H. Lim, S.H. Cho, and B.J. Cho, ACS Energy Lett. 3, 501 (2018). CrossRef
5.
6.
go back to reference Y. Liao, H. Yao, A. Lingley, B. Parviz, and B.P. Otis, IEEE J. Solid-State Circuits 47, 335 (2012). CrossRef Y. Liao, H. Yao, A. Lingley, B. Parviz, and B.P. Otis, IEEE J. Solid-State Circuits 47, 335 (2012). CrossRef
7.
go back to reference D.P. Rose, M.E. Ratterman, D.K. Griffin, L. Hou, N. Kelley-Loughnane, R.R. Naik, J.A. Hagen, I. Papautsky, and J.C. Heikenfeld, IEEE Trans. Biomed. Eng. 62, 1457 (2014). CrossRef D.P. Rose, M.E. Ratterman, D.K. Griffin, L. Hou, N. Kelley-Loughnane, R.R. Naik, J.A. Hagen, I. Papautsky, and J.C. Heikenfeld, IEEE Trans. Biomed. Eng. 62, 1457 (2014). CrossRef
9.
go back to reference K. Singkaselit, A. Sakulkalavek, and R. Sakdanuphab, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 035002 (2017). CrossRef K. Singkaselit, A. Sakulkalavek, and R. Sakdanuphab, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 035002 (2017). CrossRef
10.
go back to reference J.-H. Kim, J.-Y. Choi, J.-M. Bae, M.-Y. Kim, and T.-S. Oh, Mater. Trans. 54, 618 (2013). CrossRef J.-H. Kim, J.-Y. Choi, J.-M. Bae, M.-Y. Kim, and T.-S. Oh, Mater. Trans. 54, 618 (2013). CrossRef
11.
go back to reference F. Yang, S. Zheng, H. Wang, W. Chu, and Y. Dong, J. Micromech. Microeng. 27, 055005 (2017). CrossRef F. Yang, S. Zheng, H. Wang, W. Chu, and Y. Dong, J. Micromech. Microeng. 27, 055005 (2017). CrossRef
12.
go back to reference A. Al-Bayaz, A. Giani, M. Artaud, A. Foucaran, F. Pascal-Delannoy, and A. Boyer, J. Cryst. Growth 241, 463 (2002). CrossRef A. Al-Bayaz, A. Giani, M. Artaud, A. Foucaran, F. Pascal-Delannoy, and A. Boyer, J. Cryst. Growth 241, 463 (2002). CrossRef
13.
go back to reference C. W. Lee, G. H. Kim, J. W. Choi, K. S. An, J. S. Kim, H. Kim, and Y. K. Lee, Physica Status Solidi (RRL)–Rapid Res. Lett. 11, 1700029 (2017). C. W. Lee, G. H. Kim, J. W. Choi, K. S. An, J. S. Kim, H. Kim, and Y. K. Lee, Physica Status Solidi (RRL)–Rapid Res. Lett. 11, 1700029 (2017).
14.
go back to reference S. Golia, M. Arora, R. Sharma, and A. Rastogi, Curr. Appl. Phys. 3, 195 (2003). CrossRef S. Golia, M. Arora, R. Sharma, and A. Rastogi, Curr. Appl. Phys. 3, 195 (2003). CrossRef
15.
go back to reference P. Fourmont, L.F. Gerlein, F.-X. Fortier, S.G. Cloutier, and R. Nechache, ACS Appl. Mater. Interfaces 10, 10194 (2018). CrossRef P. Fourmont, L.F. Gerlein, F.-X. Fortier, S.G. Cloutier, and R. Nechache, ACS Appl. Mater. Interfaces 10, 10194 (2018). CrossRef
16.
go back to reference Z. Cao, M.J. Tudor, R.N. Torah, and S.P. Beeby, IEEE Trans. Electron Devices 63, 4024 (2016). CrossRef Z. Cao, M.J. Tudor, R.N. Torah, and S.P. Beeby, IEEE Trans. Electron Devices 63, 4024 (2016). CrossRef
17.
18.
go back to reference P. Nuthongkum, R. Sakdanuphab, M. Horprathum, and A. Sakulkalavek, J. Electron. Mater. 46, 6444 (2017). CrossRef P. Nuthongkum, R. Sakdanuphab, M. Horprathum, and A. Sakulkalavek, J. Electron. Mater. 46, 6444 (2017). CrossRef
19.
go back to reference S. Shen, W. Zhu, Y. Deng, H. Zhao, Y. Peng, and C. Wang, Appl. Surf. Sci. 414, 197 (2017). CrossRef S. Shen, W. Zhu, Y. Deng, H. Zhao, Y. Peng, and C. Wang, Appl. Surf. Sci. 414, 197 (2017). CrossRef
20.
go back to reference D.-H. Kim, E. Byon, G.-H. Lee, and S. Cho, Thin Solid Films 510, 148 (2006). CrossRef D.-H. Kim, E. Byon, G.-H. Lee, and S. Cho, Thin Solid Films 510, 148 (2006). CrossRef
22.
go back to reference S. Nimbalkar, E. Castagnola, A. Balasubramani, A. Scarpellini, S. Samejima, A. Khorasani, A. Boissenin, S. Thongpang, C. Moritz, and S. Kassegne, Sci. Rep. 8, 6958 (2018). CrossRef S. Nimbalkar, E. Castagnola, A. Balasubramani, A. Scarpellini, S. Samejima, A. Khorasani, A. Boissenin, S. Thongpang, C. Moritz, and S. Kassegne, Sci. Rep. 8, 6958 (2018). CrossRef
23.
go back to reference S.W. Shaner, J.K. Allen, M. Felderman, E.T. Pasko, C.D. Wimer, N.D. Cosford, S. Kassegne, and P. Teriete, AIP Adv. 9, 065313 (2019). CrossRef S.W. Shaner, J.K. Allen, M. Felderman, E.T. Pasko, C.D. Wimer, N.D. Cosford, S. Kassegne, and P. Teriete, AIP Adv. 9, 065313 (2019). CrossRef
24.
go back to reference V. Russo, A. Bailini, M. Zamboni, M. Passoni, C. Conti, C.S. Casari, A. Li Bassi, and C.E. Bottani, J. Raman Spectrosc. 39, 205 (2008). CrossRef V. Russo, A. Bailini, M. Zamboni, M. Passoni, C. Conti, C.S. Casari, A. Li Bassi, and C.E. Bottani, J. Raman Spectrosc. 39, 205 (2008). CrossRef
25.
26.
go back to reference N. Hatsuta, D. Takemori, and M. Takashiri, J. Alloys Compd. 685, 147 (2016). CrossRef N. Hatsuta, D. Takemori, and M. Takashiri, J. Alloys Compd. 685, 147 (2016). CrossRef
27.
go back to reference J.-M. Lin, Y.-C. Chen, and W. Chen, J. Nanomater. 16, 225 (2015). J.-M. Lin, Y.-C. Chen, and W. Chen, J. Nanomater. 16, 225 (2015).
28.
go back to reference J.-M. Lin, Y.-C. Chen, and C.-P. Lin, J. Nanomater. 2013, 1 (2013). J.-M. Lin, Y.-C. Chen, and C.-P. Lin, J. Nanomater. 2013, 1 (2013).
29.
go back to reference E.M.F. Vieira, J. Figueira, A.L. Pires, J. Grilo, M.F. Silva, A.M. Pereira, and L.M. Goncalves, J. Alloys Compd. 774, 1102 (2019). CrossRef E.M.F. Vieira, J. Figueira, A.L. Pires, J. Grilo, M.F. Silva, A.M. Pereira, and L.M. Goncalves, J. Alloys Compd. 774, 1102 (2019). CrossRef
30.
go back to reference M. Goto, M. Sasaki, Y. Xu, T. Zhan, Y. Isoda, and Y. Shinohara, Appl. Surf. Sci. 407, 405 (2017). CrossRef M. Goto, M. Sasaki, Y. Xu, T. Zhan, Y. Isoda, and Y. Shinohara, Appl. Surf. Sci. 407, 405 (2017). CrossRef
31.
go back to reference Y.-J. Wu, S.-C. Hsu, Y.-C. Lin, Y. Xu, T.-H. Chuang, and S.-C. Chen, Surf. Coat. Technol., 125694 (2020). Y.-J. Wu, S.-C. Hsu, Y.-C. Lin, Y. Xu, T.-H. Chuang, and S.-C. Chen, Surf. Coat. Technol., 125694 (2020).
32.
go back to reference S. Cho, Y. Kim, A. DiVenere, G.K. Wong, J.B. Ketterson, and J.R. Meyer, Appl. Phys. Lett. 75, 1401 (1999). CrossRef S. Cho, Y. Kim, A. DiVenere, G.K. Wong, J.B. Ketterson, and J.R. Meyer, Appl. Phys. Lett. 75, 1401 (1999). CrossRef
33.
go back to reference Z.-K. Cai, P. Fan, Z.-H. Zheng, P.-J. Liu, T.-B. Chen, X.-M. Cai, J.-T. Luo, G.-X. Liang, and D.-P. Zhang, Appl. Surf. Sci. 280, 225 (2013). CrossRef Z.-K. Cai, P. Fan, Z.-H. Zheng, P.-J. Liu, T.-B. Chen, X.-M. Cai, J.-T. Luo, G.-X. Liang, and D.-P. Zhang, Appl. Surf. Sci. 280, 225 (2013). CrossRef
34.
go back to reference S.R. Sridhara, M. DiRenzo, S. Lingam, S.-J. Lee, R. Blazquez, J. Maxey, S. Ghanem, Y.-H. Lee, R. Abdallah, and P. Singh, IEEE J. Solid-State Circuits 46, 721 (2011). CrossRef S.R. Sridhara, M. DiRenzo, S. Lingam, S.-J. Lee, R. Blazquez, J. Maxey, S. Ghanem, Y.-H. Lee, R. Abdallah, and P. Singh, IEEE J. Solid-State Circuits 46, 721 (2011). CrossRef
35.
Metadata
Title
Effects of RF Magnetron Sputtering Deposition Power on Crystallinity and Thermoelectric Properties of Antimony Telluride and Bismuth Telluride Thin Films on Flexible Substrates
Authors
Farbod Amirghasemi
Sam Kassegne
Publication date
23-01-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 4/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08681-y

Other articles of this Issue 4/2021

Journal of Electronic Materials 4/2021 Go to the issue