Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2022

11-03-2022 | Technical Article

Effects of Solidification under Ultrasonic Vibrations on Al11Ce3 Phase Fragmentation and Mechanical Properties of Al-10 wt.% Ce Alloy

Authors: S. El-Hadad, M. E. Moussa, M. A. Waly

Published in: Journal of Materials Engineering and Performance | Issue 7/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Al-Ce alloys are currently receiving attention due to their high-temperature properties. Ultrasonic treatment (UST) is a liquid metal processing method, through which the structure of light alloys is modified. In the present study, Al-10 wt.% Ce alloy is prepared by melting and solidification under ultrasonic vibrations. UST temperatures (645-665 °C) are decided using differential scanning calorimetry. This study investigates the morphology of orthorhombic Al11Ce3 compound as influenced by UST, and the corresponding effects on the strength and high-temperature wear properties. It was observed that the shearing behavior of ultrasonic waves fragmented the intermetallic compound. Instead of being coarse and connected lath-like phase, Al11Ce3 was changed to well-fragmented particles. The particle size of Al11Ce3 decreased from ~30 μm to ~3 μm, with UST at 655 °C and up to submicron. The area fraction of the intermetallic particles also increased from ~31 to ~40% after UST at the optimum temperature. The hardness of conventionally solidified alloy increased from ~42 to 50 Hv, and the ultimate compression strength increased from ~290 to 390 MPa, after UST at 655 °C. The fine and well-distributed intermetallic particles observed at the optimum UST temperature increased the wear resistance of the alloy at both RT and higher temperatures.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths & Co Ltd, Oxford, 1976. L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths & Co Ltd, Oxford, 1976.
2.
go back to reference Metals Handbook. 9th ed. Vol. 13. ASM International; 1987, p. 585 Metals Handbook. 9th ed. Vol. 13. ASM International; 1987, p. 585
3.
go back to reference J.R.D. Davis, Aluminum and Aluminum Alloys, ASM International, Russell Township, 1993. J.R.D. Davis, Aluminum and Aluminum Alloys, ASM International, Russell Township, 1993.
4.
go back to reference Ø. Ryen, B. Holmedal, and O. Nijs, Strengthening Mechanisms in Solid Solution Aluminum Alloys, Metall. and Mater. Trans. A., 2006, 37, p 1999–2006. Ø. Ryen, B. Holmedal, and O. Nijs, Strengthening Mechanisms in Solid Solution Aluminum Alloys, Metall. and Mater. Trans. A., 2006, 37, p 1999–2006.
5.
go back to reference V.V. Zakharov, Effect of Scandium on the Structure and Properties of Aluminum Alloys, Met. Sci. Heat Treat., 2003, 45, p 246–253. V.V. Zakharov, Effect of Scandium on the Structure and Properties of Aluminum Alloys, Met. Sci. Heat Treat., 2003, 45, p 246–253.
6.
go back to reference M.E. Moussa, S. El-Hadad, and W. Khalifa, Influence of Chemical Modification by Y2O3 on the Eutectic Si Characteristics and Tensile Properties of A356 Alloy, Trans. Nonferrous Metals Soc. China, 2019, 29, p 1365–1374. M.E. Moussa, S. El-Hadad, and W. Khalifa, Influence of Chemical Modification by Y2O3 on the Eutectic Si Characteristics and Tensile Properties of A356 Alloy, Trans. Nonferrous Metals Soc. China, 2019, 29, p 1365–1374.
7.
go back to reference W.L. Bevilaqua, A.R. Stadtlander, A.R. Froehlich, G.V.B. Lemos, and A. Reguly, High-Temperature Mechanical Properties of Cast Al-Si–Cu–Mg alloy by Combined Additions of Cerium and Zirconium, Mater. Res. Express, 2020, 7, p 026532. W.L. Bevilaqua, A.R. Stadtlander, A.R. Froehlich, G.V.B. Lemos, and A. Reguly, High-Temperature Mechanical Properties of Cast Al-Si–Cu–Mg alloy by Combined Additions of Cerium and Zirconium, Mater. Res. Express, 2020, 7, p 026532.
8.
go back to reference N.A. Belov, Principles of Optimizing the Structure of Creep-Resisting Casting Aluminum Alloys Using Transition Metals, J. Adv. Mater., 1994, 1, p 321–329. N.A. Belov, Principles of Optimizing the Structure of Creep-Resisting Casting Aluminum Alloys Using Transition Metals, J. Adv. Mater., 1994, 1, p 321–329.
9.
go back to reference N.A. Belov, E.A. Naumova and D.G. Eskin, Casting Alloys of the Al–Ce–Ni System: A Microstructural Approach to Alloy Design, Mater. Sci. Eng. A, 1999, 271, p 134–142. N.A. Belov, E.A. Naumova and D.G. Eskin, Casting Alloys of the Al–Ce–Ni System: A Microstructural Approach to Alloy Design, Mater. Sci. Eng. A, 1999, 271, p 134–142.
10.
go back to reference D.N. Seidman, E.A. Marquis, and D.C. Dunand, Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-Treatable Al(Sc) Alloys, Acta Mater., 2002, 50, p 4021–4035. D.N. Seidman, E.A. Marquis, and D.C. Dunand, Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-Treatable Al(Sc) Alloys, Acta Mater., 2002, 50, p 4021–4035.
11.
go back to reference D. Weiss, Development and Casting of High Cerium Content Aluminum Alloys, American Foundry Society, Transactions of the American Foundry Society, Schaumburg, 2017, p 17–013 D. Weiss, Development and Casting of High Cerium Content Aluminum Alloys, American Foundry Society, Transactions of the American Foundry Society, Schaumburg, 2017, p 17–013
12.
go back to reference Z.C. Sims, O.R. Rios, P.E. Turchi, and A.A. Perron, High-Performance Aluminum-Cerium Alloys for High-Temperature Applications, Materials, Horizon., 2017, 4, p 1070. Z.C. Sims, O.R. Rios, P.E. Turchi, and A.A. Perron, High-Performance Aluminum-Cerium Alloys for High-Temperature Applications, Materials, Horizon., 2017, 4, p 1070.
13.
go back to reference M. Vončina, S. Kores, P. Mrvar, and J. Medved, Effect of Ce on Solidification and Mechanical Properties of A360 Alloy, J. Alloys Compd., 2011, 509, p 7349–7355. M. Vončina, S. Kores, P. Mrvar, and J. Medved, Effect of Ce on Solidification and Mechanical Properties of A360 Alloy, J. Alloys Compd., 2011, 509, p 7349–7355.
14.
go back to reference X. Shikun, Y. Rongxi, G. Zhi, X. Xiang, H. Chen, and G. Xiuyan, Effects of Rare Earth Ce on Casting Properties of Al-45Cu Alloy, Adv. Mater. Res., 2010, 136, p 1–4. X. Shikun, Y. Rongxi, G. Zhi, X. Xiang, H. Chen, and G. Xiuyan, Effects of Rare Earth Ce on Casting Properties of Al-45Cu Alloy, Adv. Mater. Res., 2010, 136, p 1–4.
15.
go back to reference X. Shikun, A. Yongping, G. Zhi, X. Xiang, and Y. Rongxi, Effects of Ce Addition on the Mobility and Hot Tearing Tendency of Al-4.5Cu Alloy, Adv. Mater. Res., 2010, 146–147, p 481–484. X. Shikun, A. Yongping, G. Zhi, X. Xiang, and Y. Rongxi, Effects of Ce Addition on the Mobility and Hot Tearing Tendency of Al-4.5Cu Alloy, Adv. Mater. Res., 2010, 146–147, p 481–484.
16.
go back to reference J. Grbner, D. Mirkovic, and R. Schmid-Fetzer, Thermodynamic Aspects of the Constitution, Grain Refining, and Solidification Enthalpies of Al-Ce-Si Alloys, Metall. Mater. Trans. A., 2004, 35, p 3349. J. Grbner, D. Mirkovic, and R. Schmid-Fetzer, Thermodynamic Aspects of the Constitution, Grain Refining, and Solidification Enthalpies of Al-Ce-Si Alloys, Metall. Mater. Trans. A., 2004, 35, p 3349.
17.
go back to reference D. Weiss, Improved High-Temperature Aluminum Alloys Containing Cerium, J. Mater. Eng. Perform., 2019, 28, p 1903–1908. D. Weiss, Improved High-Temperature Aluminum Alloys Containing Cerium, J. Mater. Eng. Perform., 2019, 28, p 1903–1908.
18.
go back to reference G.E. Totten, and D.S. MacKenzie Eds., Handbook of Aluminum, Physical Metallurgy and Processes, Vol 1 Marcel Dekker Inc, New York, 2003, p 599–604 G.E. Totten, and D.S. MacKenzie Eds., Handbook of Aluminum, Physical Metallurgy and Processes, Vol 1 Marcel Dekker Inc, New York, 2003, p 599–604
19.
go back to reference S. El-Hadad, A.M. Samuel, F.H. Samuel, H.W. Doty, and S. Valtierra, Effects of Bi and Ca Addition on the Characteristics of Eutectic Si Particles in Sr-modified 319 alloys, Int. J. Cast Met. Res., 2003, 5, p 551. S. El-Hadad, A.M. Samuel, F.H. Samuel, H.W. Doty, and S. Valtierra, Effects of Bi and Ca Addition on the Characteristics of Eutectic Si Particles in Sr-modified 319 alloys, Int. J. Cast Met. Res., 2003, 5, p 551.
21.
go back to reference N. Srivastava, G.P. Chaudhari, and M. Qian, Grain Refinement of Binary Al-Si, Al-Cu and Al-Ni Alloys by Ultrasonication, J. Mater. Process. Technol., 2017, 249, p 367–378. N. Srivastava, G.P. Chaudhari, and M. Qian, Grain Refinement of Binary Al-Si, Al-Cu and Al-Ni Alloys by Ultrasonication, J. Mater. Process. Technol., 2017, 249, p 367–378.
22.
go back to reference W. Khalifa, S. El-Hadad, Y. Tsunekawa, Microstructure Evolution and Mechanical Properties of Sonoprocessed-Thixocast AC4C Billets, 71st World Foundry Congress: Advanced Sustainable Foundry, 2014. W. Khalifa, S. El-Hadad, Y. Tsunekawa, Microstructure Evolution and Mechanical Properties of Sonoprocessed-Thixocast AC4C Billets, 71st World Foundry Congress: Advanced Sustainable Foundry, 2014.
23.
go back to reference H. Huang, Y. Xu, D. Shu, Y. Han, J. Wang, and B. Sun, Effect of ultrasonic melt treatment on structure refinement of solidified high purity aluminum, Trans. Nonferrous Metls Soc. China, 2014, 24, p 2414–2419. H. Huang, Y. Xu, D. Shu, Y. Han, J. Wang, and B. Sun, Effect of ultrasonic melt treatment on structure refinement of solidified high purity aluminum, Trans. Nonferrous Metls Soc. China, 2014, 24, p 2414–2419.
24.
go back to reference M.E. Moussa, M.A. Waly, and M. Amin, Effect of High Intensity Ultrasonic Treatment on Microstructural Modification and Hardness of a Nickel-Aluminum Bronze Alloy, J. Alloys Compd., 2018, 741, p 804–813. M.E. Moussa, M.A. Waly, and M. Amin, Effect of High Intensity Ultrasonic Treatment on Microstructural Modification and Hardness of a Nickel-Aluminum Bronze Alloy, J. Alloys Compd., 2018, 741, p 804–813.
25.
go back to reference Y. Hu, R. Jiang, X. Li, A. Li, and Z. Xie, Effects of High-Intensity Ultrasound on the Microstructure and Mechanical Properties of 2195 Aluminum Ingots, Metals, 2021, 11, p 1050. Y. Hu, R. Jiang, X. Li, A. Li, and Z. Xie, Effects of High-Intensity Ultrasound on the Microstructure and Mechanical Properties of 2195 Aluminum Ingots, Metals, 2021, 11, p 1050.
26.
go back to reference G. Lu, P. Huang, Q. Yan, P. Xu, F. Pan, H. Zhan, and Y. Chen, Optimizing the Microstructure and Mechanical Properties of Vacuum Counter-Pressure Casting ZL114A Aluminum Alloy via Ultrasonic Treatment, Materials, 2020, 13, p 4232. G. Lu, P. Huang, Q. Yan, P. Xu, F. Pan, H. Zhan, and Y. Chen, Optimizing the Microstructure and Mechanical Properties of Vacuum Counter-Pressure Casting ZL114A Aluminum Alloy via Ultrasonic Treatment, Materials, 2020, 13, p 4232.
27.
go back to reference W. Khalifa, and Y. Tsunekawa, Production of Grain-Refined AC7A Al-Mg Alloy Via Solidification in Ultrasonic Field, Trans. Nonferrous Metals Soc. China (English Ed), 2016, 26, p 930–937. W. Khalifa, and Y. Tsunekawa, Production of Grain-Refined AC7A Al-Mg Alloy Via Solidification in Ultrasonic Field, Trans. Nonferrous Metals Soc. China (English Ed), 2016, 26, p 930–937.
28.
go back to reference L. Wang, R. Qi, B. Ye, Y. Bai, R. Huang, H. Jiang, and W. Ding, Improved Tensile Strength of Al-5Ce Alloy by Permanent Magnet Stirring, Metall. Mater. Trans. A, 2020, 51, p 1972–1977. L. Wang, R. Qi, B. Ye, Y. Bai, R. Huang, H. Jiang, and W. Ding, Improved Tensile Strength of Al-5Ce Alloy by Permanent Magnet Stirring, Metall. Mater. Trans. A, 2020, 51, p 1972–1977.
29.
go back to reference D.G. Eskin, Ultrasonic Processing of Molten and Solidifying Aluminum Alloys: Overview and Outlook, Mater. Sci. Technol., 2017, 33, p 636–645. D.G. Eskin, Ultrasonic Processing of Molten and Solidifying Aluminum Alloys: Overview and Outlook, Mater. Sci. Technol., 2017, 33, p 636–645.
30.
go back to reference ASTM, Standard test and methods of compression testing of metallic materials at room temperatures, ASTM E9-09, 2009. ASTM, Standard test and methods of compression testing of metallic materials at room temperatures, ASTM E9-09, 2009.
31.
go back to reference C. Weiping, Diffusion of Cerium in the Aluminum Lattice, J. Mater. Sci. Lett., 1997, 16, p 1824–1826. C. Weiping, Diffusion of Cerium in the Aluminum Lattice, J. Mater. Sci. Lett., 1997, 16, p 1824–1826.
32.
go back to reference Z.C. Sims, O.R. Rios, Eck Industries, P.E.A. Turchi, A. Perron, J.R.I. Lee, T.T. Li, J.A. Hammons, M. Bagge-Hansen, T.M. Willey, K. An, Y. Chen, A.H. King, S.K. McCall, High-Performance Aluminum–Cerium Alloys for High-Temperature Applications (2017). Ames Laboratory Accepted Manuscripts. 51. http://lib.dr.iastate.edu/ameslab_manuscripts/51. Z.C. Sims, O.R. Rios, Eck Industries, P.E.A. Turchi, A. Perron, J.R.I. Lee, T.T. Li, J.A. Hammons, M. Bagge-Hansen, T.M. Willey, K. An, Y. Chen, A.H. King, S.K. McCall, High-Performance Aluminum–Cerium Alloys for High-Temperature Applications (2017). Ames Laboratory Accepted Manuscripts. 51. http://​lib.​dr.​iastate.​edu/​ameslab_​manuscripts/​51.
33.
go back to reference F. Czerwinski, and B. Shalchi Amirkhiz, On the Al–Al11Ce3 Eutectic Transformation in Aluminum-Cerium Binary Alloys, Materials, 2020, 13, p 4549. F. Czerwinski, and B. Shalchi Amirkhiz, On the Al–Al11Ce3 Eutectic Transformation in Aluminum-Cerium Binary Alloys, Materials, 2020, 13, p 4549.
34.
go back to reference G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts, Gordon & Breach, Amsterdam, 1998. G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts, Gordon & Breach, Amsterdam, 1998.
35.
go back to reference T.V. Atamenko, D.G. Eskin, L. Zhang, and L. Katgerman, Criteria of Grain Refinement Induced by Ultrasonic Melt Treatment of Aluminum Alloys Containing Zr and Ti, Metall. Mater. Trans., 2010, 41, p 2056–2066. T.V. Atamenko, D.G. Eskin, L. Zhang, and L. Katgerman, Criteria of Grain Refinement Induced by Ultrasonic Melt Treatment of Aluminum Alloys Containing Zr and Ti, Metall. Mater. Trans., 2010, 41, p 2056–2066.
36.
go back to reference K.S. Suslick, Encyclopedia of Physical Science and Technology, Vol 17, 3rd ed., R.A. Meyers Ed., Academic Press, San Diego, 2001, p 363–376 K.S. Suslick, Encyclopedia of Physical Science and Technology, Vol 17, 3rd ed., R.A. Meyers Ed., Academic Press, San Diego, 2001, p 363–376
37.
go back to reference B. Patel, G.P. Chaudhari, and P.P. Bhingole, Microstructural evolution in ultrasonicated AS41 magnesium alloy, Mater. Lett., 2012, 66, p 335–338. B. Patel, G.P. Chaudhari, and P.P. Bhingole, Microstructural evolution in ultrasonicated AS41 magnesium alloy, Mater. Lett., 2012, 66, p 335–338.
38.
go back to reference A. Ramirez, M. Qian, B. Davis, and D.H. StJohn, Potency of High-Intensity Ultrasonic Treatment for Grain Refinement of Magnesium Alloys, Scripta Mater., 2008, 59, p 19–22. A. Ramirez, M. Qian, B. Davis, and D.H. StJohn, Potency of High-Intensity Ultrasonic Treatment for Grain Refinement of Magnesium Alloys, Scripta Mater., 2008, 59, p 19–22.
39.
go back to reference P.P. Bhingole, and G.P. Chaudhari, Synergy of Nano Carbon Black Inoculation and High Intensity Ultrasonic Processing in Cast Magnesium Alloys, Mater. Sci. Eng. A, 2012, 556, p 954–961. P.P. Bhingole, and G.P. Chaudhari, Synergy of Nano Carbon Black Inoculation and High Intensity Ultrasonic Processing in Cast Magnesium Alloys, Mater. Sci. Eng. A, 2012, 556, p 954–961.
40.
go back to reference M.E. Moussa, M.A. Waly, and A.M. El-Sheikh, Effect of High-Intensity Ultrasonic Treatment on Modification of Primary Mg2Si in the Hypereutectic Mg–Si Alloys, J. Alloys Compd., 2013, 577, p 693–700. M.E. Moussa, M.A. Waly, and A.M. El-Sheikh, Effect of High-Intensity Ultrasonic Treatment on Modification of Primary Mg2Si in the Hypereutectic Mg–Si Alloys, J. Alloys Compd., 2013, 577, p 693–700.
41.
go back to reference T.V. Atamanenko, D.G. Eskin, and L. Katgerman, Temperature Effects in Aluminum Melts Due to Cavitation Induced by High Power Ultrasound, Int. J. Cast Met. Res., 2009, 22, p 26–29. T.V. Atamanenko, D.G. Eskin, and L. Katgerman, Temperature Effects in Aluminum Melts Due to Cavitation Induced by High Power Ultrasound, Int. J. Cast Met. Res., 2009, 22, p 26–29.
42.
go back to reference W. Khalifa, and S. El-Hadad, Ultrasonication Effects on the Microstructure Characteristics of the A380 Die Cast Alloy, Int. J. Metalcast., 2019, 13, p 865–879. W. Khalifa, and S. El-Hadad, Ultrasonication Effects on the Microstructure Characteristics of the A380 Die Cast Alloy, Int. J. Metalcast., 2019, 13, p 865–879.
43.
go back to reference M. Panušková, E. Tillová, and M. Chalupová, Relation Between Mechanical Properties and Microstructure of Cast Aluminum Alloy AlSi9Cu3, Strength Mater, 2008, 40, p 98–101. M. Panušková, E. Tillová, and M. Chalupová, Relation Between Mechanical Properties and Microstructure of Cast Aluminum Alloy AlSi9Cu3, Strength Mater, 2008, 40, p 98–101.
44.
go back to reference J.Z. Yi, Y.X. Gao, P.D. Lee, and T.C. Lindley, Effect of Fe-Content on Fatigue Crack Initiation and Propagation in a Cast Aluminum–Silicon Alloy (A356–T6), Mater. Sci. Eng. A, 2004, 386, p 1–2. J.Z. Yi, Y.X. Gao, P.D. Lee, and T.C. Lindley, Effect of Fe-Content on Fatigue Crack Initiation and Propagation in a Cast Aluminum–Silicon Alloy (A356–T6), Mater. Sci. Eng. A, 2004, 386, p 1–2.
45.
go back to reference W. Khalifa, Y. Tsunekawa, and M. Okumiya, Effect of Ultrasonic Treatment on the Fe-Intermetallic Phases in ADC12 Die Cast Alloy, J. Mater. Process. Technol., 2010, 210, p 2178–2187. W. Khalifa, Y. Tsunekawa, and M. Okumiya, Effect of Ultrasonic Treatment on the Fe-Intermetallic Phases in ADC12 Die Cast Alloy, J. Mater. Process. Technol., 2010, 210, p 2178–2187.
46.
go back to reference Z. Fan, X. Fang, and S. Ji, Microstructure and Mechanical Properties of Rheo-Diecast (RDC) Aluminum Alloys, Mater. Sci. Eng. A, 2005, 412, p 298–306. Z. Fan, X. Fang, and S. Ji, Microstructure and Mechanical Properties of Rheo-Diecast (RDC) Aluminum Alloys, Mater. Sci. Eng. A, 2005, 412, p 298–306.
47.
go back to reference J.G. Jung, J.M. Lee, Y.H. Cho, and W.H. Yoon, Combined Effects of Ultrasonic Melt Treatment, Si Addition and Solution Treatment on the Microstructure and Tensile Properties of Multicomponent Al-Si Alloys, J. Alloys Compd., 2017, 693, p 201–210. J.G. Jung, J.M. Lee, Y.H. Cho, and W.H. Yoon, Combined Effects of Ultrasonic Melt Treatment, Si Addition and Solution Treatment on the Microstructure and Tensile Properties of Multicomponent Al-Si Alloys, J. Alloys Compd., 2017, 693, p 201–210.
48.
go back to reference G. Rajaram, S. Kumaran, and S.T. Rao, High Temperature Tensile and Wear Behavior of Aluminum Silicon Alloy, Mater. Sci. Eng. A, 2010, 528, p 247–253. G. Rajaram, S. Kumaran, and S.T. Rao, High Temperature Tensile and Wear Behavior of Aluminum Silicon Alloy, Mater. Sci. Eng. A, 2010, 528, p 247–253.
49.
go back to reference S. Ayyanar, A. Gnanavelbabu, K. Rajkumar, and P. Loganathan, Metals and Materials International Studies on High Temperature Wear and Friction Behavior of AA6061/B4C/hBN Hybrid Composites, Mater. Sci. Eng. A, 2020, 764, p 012001. S. Ayyanar, A. Gnanavelbabu, K. Rajkumar, and P. Loganathan, Metals and Materials International Studies on High Temperature Wear and Friction Behavior of AA6061/B4C/hBN Hybrid Composites, Mater. Sci. Eng. A, 2020, 764, p 012001.
Metadata
Title
Effects of Solidification under Ultrasonic Vibrations on Al11Ce3 Phase Fragmentation and Mechanical Properties of Al-10 wt.% Ce Alloy
Authors
S. El-Hadad
M. E. Moussa
M. A. Waly
Publication date
11-03-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06676-w

Other articles of this Issue 7/2022

Journal of Materials Engineering and Performance 7/2022 Go to the issue

Premium Partners